Suppr超能文献

干眼病活体共聚焦显微镜图像中环状神经的分割和多参数评估。

Segmentation and multiparametric evaluation of corneal whorl-like nerves for in vivo confocal microscopy images in dry eye disease.

机构信息

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China

出版信息

BMJ Open Ophthalmol. 2024 Oct 7;9(1):e001861. doi: 10.1136/bmjophth-2024-001861.

Abstract

OBJECTIVE

To establish an automated corneal nerve analysis system for corneal in vivo confocal microscopy (IVCM) images from both the whorl-like corneal nerves in the inferior whorl (IW) region and the straight ones in the central cornea and to characterise the geometric features of cornea nerves in dry eye disease (DED).

METHODS AND ANALYSIS

An encoder-decoder-based semi-supervised method was proposed for corneal nerve segmentation. This model's performance was compared with the ground truth provided by experienced clinicians, using Dice similarity coefficient (DSC), mean intersection over union (mIoU), accuracy (Acc), sensitivity (Sen) and specificity (Spe). The corneal nerve total length (CNFL), tortuosity (CNTor), fractal dimension (CND) and number of branching points (CNBP) were used for further analysis in an independent DED dataset including 50 patients with DED and 30 healthy controls.

RESULTS

The model achieved 95.72% Acc, 97.88% Spe, 80.61% Sen, 75.26% DSC, 77.57% mIoU and an area under the curve value of 0.98. For clinical evaluation, the CNFL, CNBP and CND for whorl-like and straight nerves showed a significant decrease in DED patients compared with healthy controls (p<0.05). Additionally, significantly elevated CNTor was detected in the IW in DED patients (p<0.05). The CNTor for straight corneal nerves, however, showed no significant alteration in DED patients (p>0.05).

CONCLUSION

The proposed method segments both whorl-like and straight corneal nerves in IVCM images with high accuracy and offered parameters to objectively quantify DED-induced corneal nerve injury. The IW is an effective region to detect alterations of multiple geometric indices in DED patients.

摘要

目的

建立一种自动角膜神经分析系统,用于分析角膜活体共聚焦显微镜(IVCM)图像中的下环涡状角膜神经(IW 区)和中央角膜的直形神经,并对干眼疾病(DED)中角膜神经的几何特征进行特征描述。

方法和分析

提出了一种基于编解码器的半监督方法进行角膜神经分割。使用 Dice 相似系数(DSC)、平均交并比(mIoU)、准确率(Acc)、敏感度(Sen)和特异度(Spe),将该模型的性能与经验丰富的临床医生提供的真实数据进行比较。在一个包含 50 名 DED 患者和 30 名健康对照者的独立 DED 数据集上,进一步分析了角膜神经总长度(CNFL)、扭曲度(CNTor)、分形维数(CND)和分支点数(CNBP)。

结果

该模型的 Acc、Spe、Sen、DSC、mIoU 和曲线下面积分别达到 95.72%、97.88%、80.61%、75.26%、77.57%和 0.98。对于临床评估,DED 患者的涡状和直形角膜神经的 CNFL、CNBP 和 CND 明显低于健康对照组(p<0.05)。此外,DED 患者的 IW 中 CNTor 明显升高(p<0.05)。然而,DED 患者直形角膜神经的 CNTor 没有明显变化(p>0.05)。

结论

该方法可准确分割 IVCM 图像中的涡状和直形角膜神经,并提供客观量化 DED 引起的角膜神经损伤的参数。IW 是检测 DED 患者多种几何指数改变的有效区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e9e/11459327/2f9c09985626/bmjophth-9-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验