文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

二维配位雷奈酸锶-锰纳米带作为癌症放化疗和免疫治疗的佐剂。

Two-dimensional coordination risedronate-manganese nanobelts as adjuvant for cancer radiotherapy and immunotherapy.

机构信息

State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, China.

Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, College of Optical Engineering & Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, China.

出版信息

Nat Commun. 2024 Oct 8;15(1):8692. doi: 10.1038/s41467-024-53084-w.


DOI:10.1038/s41467-024-53084-w
PMID:39375342
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11458765/
Abstract

The irradiated tumor itself represents an opportunity to establish endogenous in situ vaccines. However, such in situ cancer vaccination (ISCV) triggered by radiation therapy (RT) alone is very weak and hardly elicits systemic anticancer immunity. In this study, we develop two-dimensional risedronate-manganese nanobelts (RMn-NBs) as an adjuvant for RT to address this issue. RMn-NBs exhibit good T magnetic resonance imaging performance and enhanced Fenton-like catalytic activity, which induces immunogenic cell death. RMn-NBs can inhibit the HIF-1α/VEGF axis to empower RT and synchronously activate the cGAS/STING pathway for promoting the secretion of type I interferon, thereby boosting RT-triggered ISCV and immune checkpoint blockade therapy against primary and metastatic tumors. RMn-NBs as a nano-adjuvant for RT show good biocompatibility and therapeutic efficacy, presenting a promising prospect for cancer radiotherapy and immunotherapy.

摘要

受辐照的肿瘤本身代表了建立内源性原位疫苗的机会。然而,仅通过放射治疗(RT)引发的这种原位癌症疫苗接种(ISCV)非常弱,几乎无法引发全身性抗癌免疫。在这项研究中,我们开发了二维利塞膦酸盐-锰纳米带(RMn-NBs)作为 RT 的佐剂来解决这个问题。RMn-NBs 表现出良好的 T 磁共振成像性能和增强的类芬顿催化活性,诱导免疫原性细胞死亡。RMn-NBs 可以抑制 HIF-1α/VEGF 轴来增强 RT,并同步激活 cGAS/STING 通路以促进 I 型干扰素的分泌,从而增强 RT 触发的 ISCV 和免疫检查点阻断治疗原发性和转移性肿瘤。作为 RT 的纳米佐剂,RMn-NBs 具有良好的生物相容性和治疗效果,为癌症放射治疗和免疫治疗带来了广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/7dd92aa18047/41467_2024_53084_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/fc6932299717/41467_2024_53084_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/a482c2277fe4/41467_2024_53084_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/5629184c7c78/41467_2024_53084_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/a0e4c99c2269/41467_2024_53084_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/7e7dd69e892a/41467_2024_53084_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/dd046eaa6408/41467_2024_53084_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/4bf66e77c538/41467_2024_53084_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/fc466ae3a90a/41467_2024_53084_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/7dd92aa18047/41467_2024_53084_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/fc6932299717/41467_2024_53084_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/a482c2277fe4/41467_2024_53084_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/5629184c7c78/41467_2024_53084_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/a0e4c99c2269/41467_2024_53084_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/7e7dd69e892a/41467_2024_53084_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/dd046eaa6408/41467_2024_53084_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/4bf66e77c538/41467_2024_53084_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/fc466ae3a90a/41467_2024_53084_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1436/11458765/7dd92aa18047/41467_2024_53084_Fig9_HTML.jpg

相似文献

[1]
Two-dimensional coordination risedronate-manganese nanobelts as adjuvant for cancer radiotherapy and immunotherapy.

Nat Commun. 2024-10-8

[2]
Risedronate-functionalized manganese-hydroxyapatite amorphous particles: A potent adjuvant for subunit vaccines and cancer immunotherapy.

J Control Release. 2024-3

[3]
A lyophilizable LNP vaccine enables STING-reinforced postoperational adjuvant immunotherapy.

J Nanobiotechnology. 2025-5-26

[4]
Metal coordination nanotheranostics mediated by nucleoside metabolic inhibitors potentiate STING pathway activation for cancer metalloimmunotherapy.

J Control Release. 2024-6

[5]
Tumor microenvironment-responsive manganese-based nano-modulator activate the cGAS-STING pathway to enhance innate immune system response.

J Nanobiotechnology. 2024-9-3

[6]
Mitochondria-targeted manganese-based mesoporous silica nanoplatforms trigger cGAS-STING activation and sensitize anti PD-L1 therapy in triple-negative breast cancer.

Acta Biomater. 2025-4-26

[7]
Differential reinforcement of cGAS-STING pathway-involved immunotherapy by biomineralized bacterial outer membrane-sensitized EBRT and RNT.

J Nanobiotechnology. 2024-6-3

[8]
Enhanced Cancer Immunotherapy by Bacterial Cytoplasmic Membranes Coated Nanovaccines for Co-Delivery of Ovalbumin Antigen and Immune Adjuvants to Dendritic Cells in Lymph Nodes.

Int J Nanomedicine. 2025-2-21

[9]
Dual-modality immune nano-activator harnessing Mn⁺ and quercetin to potentiate the cGAS-STING pathway for advanced cancer metalloimmunotherapy.

J Nanobiotechnology. 2025-3-25

[10]
Nanoparticle-Enhanced Radiotherapy to Trigger Robust Cancer Immunotherapy.

Adv Mater. 2019-1-21

引用本文的文献

[1]
Bioinspired ruthenium-manganese-oxygen complex for biocatalytic and radiosensitization therapies to eradicate primary and metastatic tumors.

Nat Commun. 2025-8-16

[2]
Unlocking the therapeutic potential of the STING signaling pathway in anti-tumor treatment.

Clin Exp Med. 2025-8-12

[3]
Advanced nanotheranostic approaches for targeted glioblastoma treatment: a synergistic fusion of CRISPR-Cas gene editing, AI-driven tumor profiling, and BBB-modulation.

Med Oncol. 2025-8-7

[4]
Enhancing radiotherapy-induced anti-tumor immunity via nanoparticle-mediated STING agonist synergy.

Mol Cancer. 2025-6-11

[5]
Mechanisms and Applications of Manganese-Based Nanomaterials in Tumor Diagnosis and Therapy.

Biomater Res. 2025-2-28

[6]
Synergistic strategies for glioblastoma treatment: CRISPR-based multigene editing combined with immune checkpoint blockade.

J Nanobiotechnology. 2025-2-7

本文引用的文献

[1]
Chiral coordination polymer nanowires boost radiation-induced in situ tumor vaccination.

Nat Commun. 2024-5-9

[2]
Emerging evidence for adapting radiotherapy to immunotherapy.

Nat Rev Clin Oncol. 2023-8

[3]
The cGAS-STING pathway and cancer.

Nat Cancer. 2022-12

[4]
Mn Bispidine Complex Combining Exceptional Stability, Inertness, and MRI Efficiency.

J Am Chem Soc. 2022-12-7

[5]
Buffering the local pH single-atomic Mn-N auxiliary sites to boost CO electroreduction.

Chem Sci. 2022-11-2

[6]
Combination cancer immunotherapies: Emerging treatment strategies adapted to the tumor microenvironment.

Sci Transl Med. 2022-11-9

[7]
NRG Oncology/RTOG1205: A Randomized Phase II Trial of Concurrent Bevacizumab and Reirradiation Versus Bevacizumab Alone as Treatment for Recurrent Glioblastoma.

J Clin Oncol. 2023-2-20

[8]
Protocol to isolate and analyze mouse bone marrow derived dendritic cells (BMDC).

STAR Protoc. 2022-9-16

[9]
Cancer vaccines: the next immunotherapy frontier.

Nat Cancer. 2022-8

[10]
Multifunctional nanoparticle potentiates the in situ vaccination effect of radiation therapy and enhances response to immune checkpoint blockade.

Nat Commun. 2022-8-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索