Suppr超能文献

一种使用机器学习算法和可解释人工智能方法预测心脏病的建议技术。

A proposed technique for predicting heart disease using machine learning algorithms and an explainable AI method.

机构信息

College of Computer Science, King Khalid University, Abha, Kingdom of Saudi Arabia.

Electronics and Micro-Electronics Laboratory (E. μ. E. L), Faculty of Sciences of Monastir, University of Monastir, Monastir, Tunisia.

出版信息

Sci Rep. 2024 Oct 7;14(1):23277. doi: 10.1038/s41598-024-74656-2.

Abstract

One of the critical issues in medical data analysis is accurately predicting a patient's risk of heart disease, which is vital for early intervention and reducing mortality rates. Early detection allows for timely treatment and continuous monitoring by healthcare providers, which is essential but often limited by the inability of medical professionals to provide constant patient supervision. Early detection of cardiac problems and continuous patient monitoring by physicians can help reduce death rates. Doctors cannot constantly have contact with patients, and heart disease detection is not always accurate. By offering a more solid foundation for prediction and decision-making based on data provided by healthcare sectors worldwide, machine learning (ML) could help physicians with the prediction and detection of HD. This study aims to use different feature selection strategies to produce an accurate ML algorithm for early heart disease prediction. We have chosen features using chi-square, ANOVA, and mutual information methods. The three feature groups chosen were SF-1, SF-2, and SF-3. The study employed ten machine learning algorithms to determine the most accurate technique and feature subset fit. The classification algorithms used include support vector machines (SVM), XGBoost, bagging, decision trees (DT), and random forests (RF). We evaluated the proposed heart disease prediction technique using a private dataset, a public dataset, and different cross-validation methods. We used the Synthetic Minority Oversampling Technique (SMOTE) to eliminate inconsistent data and discover the machine learning algorithm that achieves the most accurate heart disease predictions. Healthcare providers might identify early-stage heart disease quickly and cheaply with the proposed method. We have used the most effective ML algorithm to create a mobile app that instantly predicts heart disease based on the input symptoms. The experimental results demonstrated that the XGBoost algorithm performed optimally when applied to the combined datasets and the SF-2 feature subset. It had 97.57% accuracy, 96.61% sensitivity, 90.48% specificity, 95.00% precision, a 92.68% F1 score, and a 98% AUC. We have developed an explainable AI method based on SHAP approaches to understand how the system makes its final predictions.

摘要

医学数据分析中的一个关键问题是准确预测患者患心脏病的风险,这对于早期干预和降低死亡率至关重要。早期发现可以使医疗保健提供者及时进行治疗和持续监测,这是必不可少的,但通常受到医疗专业人员无法持续监督患者的限制。通过对医生进行心脏问题的早期检测和对患者的持续监测,可以帮助降低死亡率。医生不能一直与患者保持联系,而且心脏病的检测并不总是准确的。通过为基于全球医疗保健部门提供的数据进行预测和决策提供更坚实的基础,机器学习 (ML) 可以帮助医生对 HD 进行预测和检测。本研究旨在使用不同的特征选择策略来生成用于早期心脏病预测的准确 ML 算法。我们使用卡方检验、方差分析和互信息方法选择特征。选择的三个特征组是 SF-1、SF-2 和 SF-3。该研究使用了十种机器学习算法来确定最准确的技术和特征子集。使用的分类算法包括支持向量机 (SVM)、XGBoost、袋装、决策树 (DT) 和随机森林 (RF)。我们使用私人数据集、公共数据集和不同的交叉验证方法来评估提出的心脏病预测技术。我们使用合成少数过采样技术 (SMOTE) 消除不一致的数据,并发现实现最准确心脏病预测的机器学习算法。通过所提出的方法,医疗保健提供者可以快速廉价地识别早期心脏病。我们使用最有效的 ML 算法创建了一个移动应用程序,该应用程序可以根据输入症状立即预测心脏病。实验结果表明,当应用于组合数据集和 SF-2 特征子集时,XGBoost 算法表现最佳。它的准确率为 97.57%,灵敏度为 96.61%,特异性为 90.48%,精度为 95.00%,F1 分数为 92.68%,AUC 为 98%。我们已经开发了一种基于 SHAP 方法的可解释 AI 方法,以了解系统如何做出最终预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aad8/11458608/29764ebdfbb5/41598_2024_74656_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验