Suppr超能文献

基于胸部 X 射线分类的小儿肺炎高效联邦学习

Efficient federated learning for pediatric pneumonia on chest X-ray classification.

机构信息

School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China.

Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China.

出版信息

Sci Rep. 2024 Oct 7;14(1):23272. doi: 10.1038/s41598-024-74491-5.

Abstract

According to the World Health Organization (WHO), pneumonia kills about 2 million children under the age of 5 every year. Traditional machine learning methods can be used to diagnose chest X-rays of pneumonia in children, but there is a privacy and security issue in centralizing the data for training. Federated learning prevents data privacy leakage by sharing only the model and not the data, and it has a wide range of application in the medical field. We use federated learning method for classification, which effectively protects data security. And for the data heterogeneity phenomenon existing in the actual scenario, which will seriously affect the classification effect, we propose a method based on two-end control variables. Specifically, based on the classical federated learning FedAvg algorithm, we modify the loss function on the client side by adding a regular term or a penalty term, and add momentum after the average aggregation on the server side. The federated learning approach prevents the data privacy leakage problem compared to the traditional machine learning approach. In order to solve the problem of low classification accuracy due to data heterogeneity, our proposed method based on two-end control variables achieves an average improvement of 2% and an accuracy of 98% on average, and 99% individually, compared to the previous federated learning algorithms and the latest diffusion model-based method. The classification results and methodology of this study can be utilized by clinicians worldwide to improve the overall detection of pediatric pneumonia.

摘要

根据世界卫生组织(WHO)的数据,肺炎每年导致约 200 万名 5 岁以下儿童死亡。传统的机器学习方法可用于诊断儿童的胸部 X 光片是否患有肺炎,但集中数据进行训练存在隐私和安全问题。联邦学习通过仅共享模型而不共享数据来防止数据隐私泄露,并且在医疗领域有广泛的应用。我们使用联邦学习方法进行分类,有效地保护了数据安全。并且针对实际场景中存在的数据异质性现象,这会严重影响分类效果,我们提出了一种基于两端控制变量的方法。具体来说,我们基于经典的联邦学习 FedAvg 算法,通过在客户端添加正则项或惩罚项来修改损失函数,并在服务器端的平均聚合后添加动量。与传统的机器学习方法相比,联邦学习方法防止了数据隐私泄露问题。为了解决由于数据异质性导致的分类精度低的问题,我们提出的基于两端控制变量的方法与之前的联邦学习算法和最新的基于扩散模型的方法相比,平均提高了 2%,平均准确率达到 98%,个别准确率达到 99%。本研究的分类结果和方法学可以被全球的临床医生用于提高小儿肺炎的整体检测水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce20/11458595/8f96757c5e47/41598_2024_74491_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验