Suppr超能文献

评估 AI 辅助在急诊医师和放射科医师检测成人四肢骨骼骨折中的作用:一项多中心横断面诊断研究。

Assessment of an AI Aid in Detection of Adult Appendicular Skeletal Fractures by Emergency Physicians and Radiologists: A Multicenter Cross-sectional Diagnostic Study.

机构信息

From the Department of Radiology, Hôpital Fondation A. de Rothschild, 25 rue Manin, 75019 Paris, France (L.D.); Faculty of Medicine, Université de Paris, Paris, France (L.D., A. Feydy); Gleamer, Paris, France (A.D., C.A., N.C., Z.Z., N.N., E.L., A.P., N.E.R.); Department of Biostatistics, CHU Rouen, Rouen, France (A.G.); Department of Radiology, Hôpital Hôtel-Dieu, Assistance Publique-Hôpitaux de Paris, Paris, France (J.L.); Department of Radiology, Hôpital Ambroise-Paré, Assistance Publique-Hôpitaux de Paris, Boulogne-Billancourt, France (A. Felter); Department of Radiology, Hôpital Raymond-Poincaré, Assistance Publique-Hôpitaux de Paris, Garches, France (A. Felter); and Department of Radiology B, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France (L.L., N.E.R., A. Feydy).

出版信息

Radiology. 2021 Jul;300(1):120-129. doi: 10.1148/radiol.2021203886. Epub 2021 May 4.

Abstract

Background The interpretation of radiographs suffers from an ever-increasing workload in emergency and radiology departments, while missed fractures represent up to 80% of diagnostic errors in the emergency department. Purpose To assess the performance of an artificial intelligence (AI) system designed to aid radiologists and emergency physicians in the detection and localization of appendicular skeletal fractures. Materials and Methods The AI system was previously trained on 60 170 radiographs obtained in patients with trauma. The radiographs were randomly split into 70% training, 10% validation, and 20% test sets. Between 2016 and 2018, 600 adult patients in whom multiview radiographs had been obtained after a recent trauma, with or without one or more fractures of shoulder, arm, hand, pelvis, leg, and foot, were retrospectively included from 17 French medical centers. Radiographs with quality precluding human interpretation or containing only obvious fractures were excluded. Six radiologists and six emergency physicians were asked to detect and localize fractures with ( = 300) and fractures without ( = 300) the aid of software highlighting boxes around AI-detected fractures. Aided and unaided sensitivity, specificity, and reading times were compared by means of paired Student tests after averaging of performances of each reader. Results A total of 600 patients (mean age ± standard deviation, 57 years ± 22; 358 women) were included. The AI aid improved the sensitivity of physicians by 8.7% (95% CI: 3.1, 14.2; = .003 for superiority) and the specificity by 4.1% (95% CI: 0.5, 7.7; < .001 for noninferiority) and reduced the average number of false-positive fractures per patient by 41.9% (95% CI: 12.8, 61.3; = .02) in patients without fractures and the mean reading time by 15.0% (95% CI: -30.4, 3.8; = .12). Finally, stand-alone performance of a newer release of the AI system was greater than that of all unaided readers, including skeletal expert radiologists, with an area under the receiver operating characteristic curve of 0.94 (95% CI: 0.92, 0.96). Conclusion The artificial intelligence aid provided a gain of sensitivity (8.7% increase) and specificity (4.1% increase) without loss of reading speed. © RSNA, 2021

摘要

背景 放射科的影像解读工作负荷日益增加,而在急诊科,漏诊骨折占诊断错误的比例高达 80%。目的 评估一种人工智能(AI)系统在辅助放射科医生和急诊科医生检测和定位四肢骨骼骨折方面的性能。材料与方法 AI 系统之前是在 60170 例创伤患者的放射片中进行训练的。将放射片随机分为 70%的训练集、10%的验证集和 20%的测试集。2016 年至 2018 年,从 17 家法国医疗中心回顾性纳入 600 例近期创伤后获得多视图放射片的成年患者,这些患者中肩部、手臂、手部、骨盆、腿部和足部有或没有一处或多处骨折。排除了因质量问题而无法进行人工解读或仅含有明显骨折的放射片。6 名放射科医生和 6 名急诊医生分别在软件提示框标记 AI 检测到的骨折的情况下( = 300)和无骨折的情况下( = 300)检测和定位骨折。通过对每位读者的表现进行平均后,采用配对学生 t 检验比较辅助和非辅助的敏感度、特异度和阅读时间。结果 共纳入 600 例患者(平均年龄 ± 标准差,57 岁 ± 22 岁;358 例女性)。AI 辅助提高了医生的敏感度 8.7%(95%CI:3.1,14.2; =.003,具有优势),特异度提高了 4.1%(95%CI:0.5,7.7; <.001,非劣效性),并减少了无骨折患者的平均每位患者假阳性骨折数量 41.9%(95%CI:12.8,61.3; =.02),平均阅读时间减少了 15.0%(95%CI:-30.4,3.8; =.12)。最后,较新版本的 AI 系统的独立性能优于所有未辅助的读者,包括骨骼专业放射科医生,其受试者工作特征曲线下面积为 0.94(95%CI:0.92,0.96)。结论 AI 辅助提高了敏感度(增加 8.7%)和特异度(增加 4.1%),而没有降低阅读速度。 © 2021 RSNA

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验