Suppr超能文献

鉴定 MASLD 和 MASH 相关纤维化中的患者亚组:分子谱及对药物研发的意义。

Identifying patient subgroups in MASLD and MASH-associated fibrosis: molecular profiles and implications for drug development.

机构信息

Computational Drug Discovery, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.

Unit Healthy Living and Work, TNO, The Netherlands Organization for Applied Scientific Research, 2333 BE, Leiden, The Netherlands.

出版信息

Sci Rep. 2024 Oct 7;14(1):23362. doi: 10.1038/s41598-024-74098-w.

Abstract

The incidence of MASLD and MASH-associated fibrosis is rapidly increasing worldwide. Drug therapy is hampered by large patient variability and partial representation of human MASH fibrosis in preclinical models. Here, we investigated the mechanisms underlying patient heterogeneity using a discovery dataset and validated in distinct human transcriptomic datasets, to improve patient stratification and translation into subgroup specific patterns. Patient stratification was performed using weighted gene co-expression network analysis (WGCNA) in a large public transcriptomic discovery dataset (n = 216). Differential expression analysis was performed using DESeq2 to obtain differentially expressed genes (DEGs). Ingenuity Pathway analysis was used for functional annotation. The discovery dataset showed relevant fibrosis-related mechanisms representative of disease heterogeneity. Biological complexity embedded in genes signature was used to stratify discovery dataset into six subgroups of various sizes. Of note, subgroup-specific DEGs show differences in directionality in canonical pathways (e.g. Collagen biosynthesis, cytokine signaling) across subgroups. Finally, a multiclass classification model was trained and validated in two datasets. In summary, our work shows a potential alternative for patient population stratification based on heterogeneity in MASLD-MASH mechanisms. Future research is warranted to further characterize patient subgroups and identify protein targets for virtual screening and/or in vitro validation in preclinical models.

摘要

MASLD 和 MASH 相关肝纤维化的发病率在全球范围内迅速上升。药物治疗受到患者个体差异大和临床前模型中人类 MASH 纤维化代表性不足的阻碍。在这里,我们使用发现数据集研究了患者异质性的潜在机制,并在不同的人类转录组数据集进行了验证,以改善患者分层并转化为亚组特异性模式。在一个大型公共转录组发现数据集中(n=216),使用加权基因共表达网络分析(WGCNA)进行患者分层。使用 DESeq2 进行差异表达分析以获得差异表达基因(DEGs)。使用 IPA 进行功能注释。发现数据集显示了与纤维化相关的代表性疾病异质性的相关机制。基因特征中嵌入的生物学复杂性用于将发现数据集分层为六个不同大小的亚组。值得注意的是,亚组特异性 DEG 在途径(例如胶原生物合成、细胞因子信号传导)中的方向性存在差异。最后,在两个数据集上训练和验证了多类分类模型。总之,我们的工作表明,基于 MASLD-MASH 机制的异质性,患者人群分层可能有替代方案。需要进一步研究以进一步表征患者亚组,并确定用于虚拟筛选和/或临床前模型中体外验证的蛋白质靶标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e009/11458909/32524bf95d7e/41598_2024_74098_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验