Harris Laura, McDonagh Ellen M, Zhang Xiaolei, Fawcett Katherine, Foreman Amy, Daneck Petr, Sergouniotis Panagiotis I, Parkinson Helen, Mazzarotto Francesco, Inouye Michael, Hollox Edward J, Birney Ewan, Fitzgerald Tomas
European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UK.
Department of Population Health Sciences, University of Leicester, Leicester, UK.
Nat Rev Genet. 2025 Mar;26(3):156-170. doi: 10.1038/s41576-024-00778-y. Epub 2024 Oct 7.
Decades of genetic association testing in human cohorts have provided important insights into the genetic architecture and biological underpinnings of complex traits and diseases. However, for certain traits, genome-wide association studies (GWAS) for common SNPs are approaching signal saturation, which underscores the need to explore other types of genetic variation to understand the genetic basis of traits and diseases. Copy number variation (CNV) is an important source of heritability that is well known to functionally affect human traits. Recent technological and computational advances enable the large-scale, genome-wide evaluation of CNVs, with implications for downstream applications such as polygenic risk scoring and drug target identification. Here, we review the current state of CNV-GWAS, discuss current limitations in resource infrastructure that need to be overcome to enable the wider uptake of CNV-GWAS results, highlight emerging opportunities and suggest guidelines and standards for future GWAS for genetic variation beyond SNPs at scale.
数十年来,在人类队列中进行的基因关联测试为复杂性状和疾病的遗传结构及生物学基础提供了重要见解。然而,对于某些性状而言,针对常见单核苷酸多态性(SNP)的全基因组关联研究(GWAS)已接近信号饱和,这凸显了探索其他类型遗传变异以理解性状和疾病遗传基础的必要性。拷贝数变异(CNV)是遗传力的一个重要来源,众所周知它会在功能上影响人类性状。近期的技术和计算进展使得能够对CNV进行大规模的全基因组评估,这对多基因风险评分和药物靶点识别等下游应用具有重要意义。在此,我们综述了CNV-GWAS的现状,讨论了资源基础设施方面目前存在的需要克服的限制,以便更广泛地采用CNV-GWAS结果,强调了新出现的机遇,并为未来大规模研究单核苷酸多态性(SNP)以外的遗传变异的GWAS提出了指导方针和标准。