Department of Electrical Engineering and Computer Science, University of Stavanger, 4021, Stavanger, Norway.
Department of Urology, University Medical Center Rotterdam, Erasmus MC Cancer Institute, 1035 GD, Rotterdam, The Netherlands.
BMC Med Inform Decis Mak. 2024 Oct 7;24(1):288. doi: 10.1186/s12911-024-02676-z.
Histopathology is a gold standard for cancer diagnosis. It involves extracting tissue specimens from suspicious areas to prepare a glass slide for a microscopic examination. However, histological tissue processing procedures result in the introduction of artifacts, which are ultimately transferred to the digitized version of glass slides, known as whole slide images (WSIs). Artifacts are diagnostically irrelevant areas and may result in wrong predictions from deep learning (DL) algorithms. Therefore, detecting and excluding artifacts in the computational pathology (CPATH) system is essential for reliable automated diagnosis.
In this paper, we propose a mixture of experts (MoE) scheme for detecting five notable artifacts, including damaged tissue, blur, folded tissue, air bubbles, and histologically irrelevant blood from WSIs. First, we train independent binary DL models as experts to capture particular artifact morphology. Then, we ensemble their predictions using a fusion mechanism. We apply probabilistic thresholding over the final probability distribution to improve the sensitivity of the MoE. We developed four DL pipelines to evaluate computational and performance trade-offs. These include two MoEs and two multiclass models of state-of-the-art deep convolutional neural networks (DCNNs) and vision transformers (ViTs). These DL pipelines are quantitatively and qualitatively evaluated on external and out-of-distribution (OoD) data to assess generalizability and robustness for artifact detection application.
We extensively evaluated the proposed MoE and multiclass models. DCNNs-based MoE and ViTs-based MoE schemes outperformed simpler multiclass models and were tested on datasets from different hospitals and cancer types, where MoE using (MobileNet) DCNNs yielded the best results. The proposed MoE yields 86.15 % F1 and 97.93% sensitivity scores on unseen data, retaining less computational cost for inference than MoE using ViTs. This best performance of MoEs comes with relatively higher computational trade-offs than multiclass models. Furthermore, we apply post-processing to create an artifact segmentation mask, a potential artifact-free RoI map, a quality report, and an artifact-refined WSI for further computational analysis. During the qualitative evaluation, field experts assessed the predictive performance of MoEs over OoD WSIs. They rated artifact detection and artifact-free area preservation, where the highest agreement translated to a Cohen Kappa of 0.82, indicating substantial agreement for the overall diagnostic usability of the DCNN-based MoE scheme.
The proposed artifact detection pipeline will not only ensure reliable CPATH predictions but may also provide quality control. In this work, the best-performing pipeline for artifact detection is MoE with DCNNs. Our detailed experiments show that there is always a trade-off between performance and computational complexity, and no straightforward DL solution equally suits all types of data and applications. The code and HistoArtifacts dataset can be found online at Github and Zenodo , respectively.
组织病理学是癌症诊断的金标准。它涉及从可疑区域提取组织样本,以制备用于显微镜检查的玻璃载玻片。然而,组织学组织处理过程会导致引入伪影,这些伪影最终会转移到称为全玻片图像(WSI)的数字化玻璃载玻片上。伪影是与诊断无关的区域,可能导致深度学习(DL)算法得出错误的预测。因此,在计算病理学(CPATH)系统中检测和排除伪影对于可靠的自动诊断至关重要。
在本文中,我们提出了一种用于检测五种显著伪影的混合专家(MoE)方案,包括来自 WSI 的受损组织、模糊、折叠组织、气泡和组织学上无关的血液。首先,我们训练独立的二元 DL 模型作为专家来捕获特定的伪影形态。然后,我们使用融合机制对它们的预测进行集成。我们在最终概率分布上应用概率阈值以提高 MoE 的灵敏度。我们开发了四个 DL 管道来评估计算和性能权衡。这些包括两个 MoE 和两个最先进的深度卷积神经网络(DCNN)和视觉转换器(ViT)的多类模型。这些 DL 管道在外部和离群数据(OoD)上进行了定量和定性评估,以评估用于伪影检测应用的泛化能力和鲁棒性。
我们对提出的 MoE 和多类模型进行了广泛评估。基于 DCNN 的 MoE 和基于 ViT 的 MoE 方案优于更简单的多类模型,并在来自不同医院和癌症类型的数据集上进行了测试,其中基于(MobileNet)DCNN 的 MoE 取得了最佳结果。所提出的 MoE 在未见数据上产生了 86.15%的 F1 和 97.93%的灵敏度分数,同时为推理保留了较少的计算成本,优于基于 ViT 的 MoE。MoE 的最佳性能伴随着相对较高的计算权衡,而不是多类模型。此外,我们应用后处理来创建伪影分割掩模、潜在无伪影 ROI 图、质量报告和经过伪影细化的 WSI 以进行进一步的计算分析。在定性评估中,现场专家评估了 MoE 在 OoD WSI 上的预测性能。他们评估了伪影检测和无伪影区域保留,最高一致性转化为 0.82 的 Cohen Kappa,表明基于 DCNN 的 MoE 方案的整体诊断可用性具有实质性的一致性。
提出的伪影检测管道不仅将确保可靠的 CPATH 预测,还将提供质量控制。在这项工作中,用于伪影检测的最佳管道是基于 DCNN 的 MoE。我们的详细实验表明,性能和计算复杂性之间始终存在权衡,没有一种直接的 DL 解决方案同样适用于所有类型的数据和应用。代码和 HistoArtifacts 数据集可分别在 Github 和 Zenodo 上找到。