Choi Jae Won, Cho Jung-Min, Park No-Won, Kim Yun-Ho, Kim Gil-Sung, Lee Won-Yong, Park Gangmin, Akhanda Md Sabbir, Shivaram Bellave, Bennett Steven P, Zebarjadi Mona, Lee Sang-Kwon
Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea.
Department of Semiconductor Physics, Kangwon National University, Chuncheon 24341, Republic of Korea.
ACS Appl Mater Interfaces. 2024 Oct 7. doi: 10.1021/acsami.4c12754.
FeRh has been demonstrated to be an important material for the observation of magnetic phase transitions, such as the first-order transition from an antiferromagnetic (AFM) to a ferromagnetic (FM) state, in response to changes in the temperature. This is because of the magnetic moment induced in Rh atoms above the magnetic phase transition temperature. In the present study, we focus on the longitudinal spin Seebeck effect (LSSE), which involves the generation of spin voltage as a result of a temperature gradient in FM materials or FM insulators, and experimentally assess the effect of the crystalline quality of FeRh films and the properties of the substrate on the LSSE thermopower during the FM-AFM phase transition. The measured LSSE thermopower of an epitaxial (110)-oriented FeRh film grown on an AlO substrate is approximately 60 times higher than that of a polycrystalline FeRh film on a SiO/Si substrate. This can be explained by the high magnetic sensitivity and superior FM properties of (110)-oriented epitaxial FeRh films. Furthermore, by comparing the transverse thermoelectric voltage for in-plane magnetized (IM) and perpendicularly magnetized (PM) configurations, we quantitively evaluate the contribution of the exclusive anomalous Nernst effect (ANE) to the LSSE signals in the FeRh/AlO structure, finding it to be approximately 15-30% over a temperature range of 75-300 K. LSSE measurements in Pt/FeRh films are thus demonstrated to provide a versatile pathway for the development of thermoelectric power generation applications and other practical spintronics and neuromorphic computing devices.
FeRh已被证明是观察磁相变的重要材料,例如从反铁磁(AFM)到铁磁(FM)状态的一级相变,它会随温度变化而发生。这是因为在磁相变温度以上,Rh原子中会感应出磁矩。在本研究中,我们关注纵向自旋塞贝克效应(LSSE),它涉及在FM材料或FM绝缘体中由于温度梯度而产生自旋电压,并通过实验评估FeRh薄膜的晶体质量和衬底特性对FM-AFM相变过程中LSSE热功率的影响。在AlO衬底上生长的外延(110)取向FeRh薄膜的测量LSSE热功率比在SiO/Si衬底上的多晶FeRh薄膜高出约60倍。这可以用(110)取向外延FeRh薄膜的高磁灵敏度和优异的FM特性来解释。此外,通过比较面内磁化(IM)和垂直磁化(PM)配置的横向热电电压,我们定量评估了排他性反常能斯特效应(ANE)对FeRh/AlO结构中LSSE信号的贡献,发现在75-300K的温度范围内约为15-30%。因此,Pt/FeRh薄膜中的LSSE测量被证明为热电发电应用以及其他实际自旋电子学和神经形态计算设备的开发提供了一条通用途径。