Suppr超能文献

纳米颗粒向肿瘤的递送:从增强渗透与滞留效应和主动靶向机制到临床影响

Nanoparticle Delivery to Tumours: From EPR and ATR Mechanisms to Clinical Impact.

作者信息

Dasgupta Anshuman, Sofias Alexandros Marios, Kiessling Fabian, Lammers Twan

机构信息

Institute for Experimental Molecular Imaging, Center for Biohybrid Medical Systems, RWTH Aachen University Clinic, Aachen, Germany.

出版信息

Nat Rev Bioeng. 2024 Jun 4;2(9):714-716. doi: 10.1038/s44222-024-00203-3.

Abstract

New insights into active versus passive nanoparticle tumour entry and exit mechanisms are enriching the understanding of tumour-targeted drug delivery. Here, we align the principles of the enhanced permeability and retention (EPR) and active transport and retention (ATR), and outline how their mechanistic features may be employed to improve the performance and clinical impact of cancer nanomedicines.

摘要

关于纳米颗粒主动与被动进入和离开肿瘤机制的新见解正在丰富对肿瘤靶向药物递送的理解。在此,我们将增强渗透与滞留(EPR)和主动转运与滞留(ATR)的原理相结合,并概述如何利用它们的机制特征来提高癌症纳米药物的性能和临床影响。

相似文献

1
Nanoparticle Delivery to Tumours: From EPR and ATR Mechanisms to Clinical Impact.
Nat Rev Bioeng. 2024 Jun 4;2(9):714-716. doi: 10.1038/s44222-024-00203-3.
2
The exit of nanoparticles from solid tumours.
Nat Mater. 2023 Oct;22(10):1261-1272. doi: 10.1038/s41563-023-01630-0. Epub 2023 Aug 17.
4
Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation.
Biomaterials. 2021 Aug;275:120910. doi: 10.1016/j.biomaterials.2021.120910. Epub 2021 Jun 3.
6
Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms.
Adv Drug Deliv Rev. 2022 Sep;188:114449. doi: 10.1016/j.addr.2022.114449. Epub 2022 Jul 11.
7
What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.
ACS Nano. 2020 Oct 27;14(10):12281-12290. doi: 10.1021/acsnano.9b09713. Epub 2020 Oct 6.
8
Enhanced permeability and retention effect-focused tumor-targeted nanomedicines: latest trends, obstacles and future perspective.
Nanomedicine (Lond). 2022 Aug;17(18):1213-1216. doi: 10.2217/nnm-2022-0065. Epub 2022 Sep 22.
9
Strategies to improve the EPR effect: A mechanistic perspective and clinical translation.
J Control Release. 2022 May;345:512-536. doi: 10.1016/j.jconrel.2022.03.043. Epub 2022 Mar 23.
10
Macrophages as an active tumour-targeting carrier of SN38-nanoparticles for cancer therapy.
J Drug Target. 2018 Jun-Jul;26(5-6):458-465. doi: 10.1080/1061186X.2017.1419359. Epub 2017 Dec 27.

引用本文的文献

1
Nanoparticle-Based Delivery Strategies for Combating Drug Resistance in Cancer Therapeutics.
Cancers (Basel). 2025 Aug 11;17(16):2628. doi: 10.3390/cancers17162628.
4
Sonoafterglow nanoprobes for deep-tissue imaging of peroxynitrite.
Nat Protoc. 2025 Jun 26. doi: 10.1038/s41596-025-01202-3.
5
Comparative Analysis of Clinical Outcomes and Financial Aspects of Phototherapies and Immunotherapy for Cancer.
Adv Sci (Weinh). 2025 Aug;12(30):e17657. doi: 10.1002/advs.202417657. Epub 2025 Jun 19.
7
Bio-barrier-adaptable biomimetic nanomedicines combined with ultrasound for enhanced cancer therapy.
Signal Transduct Target Ther. 2025 Apr 25;10(1):137. doi: 10.1038/s41392-025-02217-8.
8
J-type assembled Pt(IV)-coordinated carbon dots for near-infrared light-triggered pyroptosis.
Light Sci Appl. 2025 Apr 15;14(1):163. doi: 10.1038/s41377-025-01834-w.
9
Pharmacokinetics modulation in solid tumors through thrombin-embedded nanomedicine.
J Nanobiotechnology. 2025 Apr 4;23(1):268. doi: 10.1186/s12951-025-03302-4.
10
Inorganic Nanomaterials Meet the Immune System: An Intricate Balance.
Adv Healthc Mater. 2025 Apr;14(11):e2404795. doi: 10.1002/adhm.202404795. Epub 2025 Mar 13.

本文引用的文献

1
Histopathological biomarkers for predicting the tumour accumulation of nanomedicines.
Nat Biomed Eng. 2024 Nov;8(11):1366-1378. doi: 10.1038/s41551-024-01197-4. Epub 2024 Apr 8.
2
The exit of nanoparticles from solid tumours.
Nat Mater. 2023 Oct;22(10):1261-1272. doi: 10.1038/s41563-023-01630-0. Epub 2023 Aug 17.
3
Engineering tumoral vascular leakiness with gold nanoparticles.
Nat Commun. 2023 Jul 17;14(1):4269. doi: 10.1038/s41467-023-40015-4.
4
Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures.
Nat Nanotechnol. 2023 Jun;18(6):657-666. doi: 10.1038/s41565-023-01323-4. Epub 2023 Feb 13.
5
Macrophages Actively Transport Nanoparticles in Tumors After Extravasation.
ACS Nano. 2022 Apr 26;16(4):6080-6092. doi: 10.1021/acsnano.1c11578. Epub 2022 Apr 12.
6
Specific Endothelial Cells Govern Nanoparticle Entry into Solid Tumors.
ACS Nano. 2021 Sep 28;15(9):14080-14094. doi: 10.1021/acsnano.1c04510. Epub 2021 Aug 12.
7
The entry of nanoparticles into solid tumours.
Nat Mater. 2020 May;19(5):566-575. doi: 10.1038/s41563-019-0566-2. Epub 2020 Jan 13.
8
Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery.
Nat Nanotechnol. 2016 Jun;11(6):533-538. doi: 10.1038/nnano.2015.342. Epub 2016 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验