Xu Cheng, Huang Jingsheng, Pu Kanyi
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
Nat Protoc. 2025 Jun 26. doi: 10.1038/s41596-025-01202-3.
Optical imaging of tumor biomarkers provides key diagnostic information about tumor status. Light-induced afterglow (photoafterglow) imaging provides a higher signal to background ratio than typical fluorescence imaging; however, both modalities face challenges in detecting biomarkers in deep tissues owing to the limited penetration depth of light. Here we provide instructions for synthesizing ultrasound-induced afterglow (sonoafterglow) nanoprobes (SNAP) for the deep-tissue imaging of peroxynitrite (ONOO), a biomarker specific for M1 macrophages and a proinflammatory tumor microenvironment. SNAPs are coassembled from initiators, afterglow substrates and amphiphilic polymers via the film rehydration method, a generic and facile approach that enables their rapid nanoconstruction (in 10 min), with high reproducibility, while also providing control over the nanoprobe concentration, which overcomes limitations of traditional nanoconstruction methods including solvent injection and emulsion-solvent evaporation. Following ultrasound stimulation, SNAPs emit sonoafterglow with bright near-infrared emission (peaking at 780 nm), with a long half-life (~2 min), and can be detected through biological tissues twice deeper than photoafterglow. We further develop SNAP into SNAP-M, which can be switched on only in the presence of ONOO, allowing the real-time in vivo imaging of a proinflammatory tumor microenvironment at an unprecedented tissue depth for optical imaging. This Protocol can be implemented by users with expertise in material science in 1 week for nanoprobe construction and characterization, 1-2 week for cell assays and 3-4 weeks for animal experiments.
肿瘤生物标志物的光学成像可提供有关肿瘤状态的关键诊断信息。光致余辉(光激发余辉)成像比典型的荧光成像具有更高的信号背景比;然而,由于光的穿透深度有限,这两种成像方式在检测深部组织中的生物标志物时都面临挑战。在这里,我们提供了合成超声诱导余辉(声激发余辉)纳米探针(SNAP)的方法说明,用于对过氧亚硝酸盐(ONOO)进行深部组织成像,ONOO是M1巨噬细胞和促炎性肿瘤微环境特有的生物标志物。SNAP通过薄膜复水法由引发剂、余辉底物和两亲聚合物共同组装而成,这是一种通用且简便的方法,能够快速(10分钟内)构建纳米结构,具有高重现性,同时还能控制纳米探针的浓度,克服了传统纳米构建方法(包括溶剂注入和乳液-溶剂蒸发法)的局限性。在超声刺激后,SNAP会发出具有明亮近红外发射(峰值在780 nm)、半衰期长(约2分钟)的声激发余辉,并且在生物组织中的可检测深度是光激发余辉的两倍。我们进一步将SNAP开发成SNAP-M,其仅在存在ONOO时才会被激活,从而能够以前所未有的组织深度对促炎性肿瘤微环境进行体内实时成像。具有材料科学专业知识的用户可在1周内完成纳米探针的构建和表征,1 - 2周内完成细胞实验,3 - 4周内完成动物实验,从而实施本方案。