Suppr超能文献

口腔健康研究中的结构方程模型:应用与考量综述

Structure equation modeling in oral health research: A review of applications and considerations.

作者信息

Purohit Abhishek, Singh Abhinav, Purohit Bharathi M

机构信息

Department of Dentistry, Regional Training Centre for Oral Health Promotion, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India.

Division of Public Health Dentistry, Centre for Dental Education and Research, WHO Collaborating Centre for Oral Health Promotion, All India Institute of Medical Sciences, New Delhi, India.

出版信息

Dent Res J (Isfahan). 2024 Aug 21;21:49. eCollection 2024.

Abstract

This review provides an overview of structure equation modeling (SEM) and its applications in dental research. SEM is a statistical technique that allows researchers to examine the relationships between variables and is useful for analyzing data from a wide range of research designs, including cross-sectional, longitudinal, and experimental studies. The process involves specifying a theoretical model, testing the model with data, and evaluating the model fit. It has been used in dental research to investigate a wide range of topics, including dental diseases, oral health-related quality of life, and dental anxiety. SEM is particularly useful in modeling the relationships between various risk factors and dental diseases and also has the potential to provide a deeper understanding of the multifactorial nature of dental diseases such as periodontitis, dental caries, and oral cancer. Moreover, the insights provided can aid in the development of effective strategies for the prevention and treatment of dental diseases. It is a powerful statistical tool that can be used by dental researchers to gain a better understanding of the intricate interplay of factors that underlie dental diseases and other oral health-related outcomes.

摘要

本综述概述了结构方程模型(SEM)及其在牙科研究中的应用。SEM是一种统计技术,它使研究人员能够检验变量之间的关系,对于分析来自各种研究设计的数据很有用,包括横断面研究、纵向研究和实验研究。该过程包括指定一个理论模型、用数据检验模型以及评估模型拟合度。它已被用于牙科研究,以调查广泛的主题,包括牙科疾病、与口腔健康相关的生活质量以及牙科焦虑。SEM在对各种风险因素与牙科疾病之间的关系进行建模方面特别有用,并且还有可能更深入地理解诸如牙周炎、龋齿和口腔癌等牙科疾病的多因素性质。此外,所提供的见解有助于制定预防和治疗牙科疾病的有效策略。它是一种强大的统计工具,牙科研究人员可以使用它来更好地理解构成牙科疾病和其他与口腔健康相关结果的因素之间的复杂相互作用。

相似文献

本文引用的文献

1
The use of Big Data Analytics in healthcare.大数据分析在医疗保健领域的应用。
J Big Data. 2022;9(1):3. doi: 10.1186/s40537-021-00553-4. Epub 2022 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验