生物标志物在新冠病毒相关鼻眶脑毛霉菌病中的可靠性及预后价值——一项长期双向性研究

Dependability and Prognostic Value of Biomarkers in COVID-19 Associated Rhino-Orbito- Cerebral Mucormycosis- A Long Term Ambispective Study.

作者信息

Das K Nidhin, Gupta Diksha, Sharma Vidhu, Soni Kapil, Banerjee Mithu, Choudhury Bikram, Goyal Amit

机构信息

Department of Otorhinolaryngology, All India Institute of Medical Sciences, Jodhpur, India.

Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.

出版信息

Indian J Otolaryngol Head Neck Surg. 2024 Oct;76(5):4559-4568. doi: 10.1007/s12070-024-04921-3. Epub 2024 Jul 27.

Abstract

UNLABELLED

COVID-19 pandemic, which has exhibited a wide clinical spectrum and an unexpected surge in mucormycosis cases, understanding various biomarkers' roles becomes pivotal. As mucormycosis leads to clinical morbidity and mortality through angioinvasion and thromboembolism, unveiling the correlation between these markers and disease progression can shed light on the reasons behind mucormycosis's emergence as an epidemic, especially following the second wave of COVID-19. This long term ambispective observational study, conducted from May 2020 to July 2023, aimed to assess specific biomarkers as predictors of severity in COVID-19-associated mucormycosis (CAM). Biomarkers measured included ESR, CRP, D-dimer, IL-8, PCT, serum ferritin, and neutrophil-lymphocyte ratio (NLR) at different time points. Data analysis employed descriptive statistics, repeated measure ANOVA, Spearman correlations, ROC curve analysis, and logistic regression. Of 290 patients, 198 completed the 2-year follow-up. Elevated baseline biomarker levels significantly decreased with treatment initiation. CRP and NLR emerged as significant predictors of severe CAM, with odds ratio 2.926 (95% CI 1.466-4.360) and 2.203 (95% CI 0.863-1.040) respectively. Factors influencing CAM progression included age, CRP, and NLR, while all biomarkers independently predicted mortality. A death prediction model using CRP, PCT, D-dimer, NLR, and IL-8 demonstrated exceptional performance, with a sensitivity of 83.1% and specificity of 100%. Elevated inflammatory markers in CAM patients showed a decline with treatment, with NLR and CRP proving crucial for predicting severity. Serial monitoring of IL-8, CRP, PCT, NLR, D-dimer, and ferritin provides insights into disease progression and prognosis. The study underscores the importance of biomarker assessment in managing CAM, especially in the context of the unpredictable clinical spectrum of COVID-19 and the subsequent mucormycosis surge.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s12070-024-04921-3.

摘要

未标注

新型冠状病毒肺炎(COVID-19)大流行呈现出广泛的临床谱,毛霉菌病病例意外激增,了解各种生物标志物的作用变得至关重要。由于毛霉菌病通过血管侵袭和血栓栓塞导致临床发病和死亡,揭示这些标志物与疾病进展之间的相关性可以阐明毛霉菌病成为一种流行病的背后原因,尤其是在COVID-19第二波疫情之后。这项从2020年5月至2023年7月进行的长期双向观察性研究旨在评估特定生物标志物作为COVID-19相关毛霉菌病(CAM)严重程度的预测指标。所测量的生物标志物包括不同时间点的红细胞沉降率(ESR)、C反应蛋白(CRP)、D-二聚体、白细胞介素-8(IL-8)、降钙素原(PCT)、血清铁蛋白和中性粒细胞与淋巴细胞比值(NLR)。数据分析采用描述性统计、重复测量方差分析、Spearman相关性分析、ROC曲线分析和逻辑回归。290例患者中,198例完成了2年随访。基线生物标志物水平升高在开始治疗后显著下降。CRP和NLR成为严重CAM的显著预测指标,优势比分别为2.926(95%置信区间1.466 - 4.360)和2.203(95%置信区间0.863 - 1.040)。影响CAM进展的因素包括年龄、CRP和NLR,而所有生物标志物均独立预测死亡率。使用CRP、PCT、D-二聚体、NLR和IL-8的死亡预测模型表现出色,敏感性为83.1%,特异性为100%。CAM患者中升高的炎症标志物在治疗后有所下降,NLR和CRP被证明对预测严重程度至关重要。对IL-8、CRP、PCT、NLR、D-二聚体和铁蛋白的连续监测有助于了解疾病进展和预后。该研究强调了生物标志物评估在管理CAM中的重要性,特别是在COVID-19不可预测的临床谱以及随后毛霉菌病激增的背景下。

补充信息

在线版本包含可在10.1007/s12070-024-04921-3获取的补充材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索