Suppr超能文献

探讨环境指标对流感发病率的影响,并利用 ARIMAX 模型进行预测。

Exploring the influence of environmental indicators and forecasting influenza incidence using ARIMAX models.

机构信息

The Affiliated Fuzhou Center for Disease Control and Prevention of Fujian Medical University, Fuzhou, China.

The School of Public Health, Fujian Medical University, Fuzhou, China.

出版信息

Front Public Health. 2024 Sep 23;12:1441240. doi: 10.3389/fpubh.2024.1441240. eCollection 2024.

Abstract

BACKGROUND

Influenza is a respiratory infection that poses a significant health burden worldwide. Environmental indicators, such as air pollutants and meteorological factors, play a role in the onset and propagation of influenza. Accurate predictions of influenza incidence and understanding the factors influencing it are crucial for public health interventions. Our study aims to investigate the impact of various environmental indicators on influenza incidence and apply the ARIMAX model to integrate these exogenous variables to enhance the accuracy of influenza incidence predictions.

METHOD

Descriptive statistics and time series analysis were employed to illustrate changes in influenza incidence, air pollutants, and meteorological indicators. Cross correlation function (CCF) was used to evaluate the correlation between environmental indicators and the influenza incidence. We used ARIMA and ARIMAX models to perform predictive analysis of influenza incidence.

RESULTS

From January 2014 to September 2023, a total of 21,573 cases of influenza were reported in Fuzhou, with a noticeable year-by-year increase in incidence. The peak of influenza typically occurred around January each year. The results of CCF analysis showed that all 10 environmental indicators had a significant impact on the incidence of influenza. The ARIMAX(0, 0, 1) (1, 0, 0) with PM(lag5) model exhibited the best prediction performance, as indicated by the lowest AIC, AICc, and BIC values, which were 529.740, 530.360, and 542.910, respectively. The model achieved a fitting RMSE of 2.999 and a predicting RMSE of 12.033.

CONCLUSION

This study provides insights into the impact of environmental indicators on influenza incidence in Fuzhou. The ARIMAX(0, 0, 1) (1, 0, 0) with PM(lag5) model could provide a scientific basis for formulating influenza control policies and public health interventions. Timely prediction of influenza incidence is essential for effective epidemic control strategies and minimizing disease transmission risks.

摘要

背景

流感是一种呼吸道传染病,在全球范围内造成了重大的健康负担。环境指标,如空气污染物和气象因素,在流感的发病和传播中起着一定的作用。准确预测流感发病率并了解影响其发病率的因素对于公共卫生干预措施至关重要。我们的研究旨在探讨各种环境指标对流感发病率的影响,并应用 ARIMAX 模型整合这些外生变量,以提高流感发病率预测的准确性。

方法

采用描述性统计和时间序列分析方法,说明流感发病率、空气污染物和气象指标的变化情况。交叉相关函数(CCF)用于评估环境指标与流感发病率之间的相关性。我们使用 ARIMA 和 ARIMAX 模型对流感发病率进行预测分析。

结果

2014 年 1 月至 2023 年 9 月,福州共报告流感病例 21573 例,发病率呈逐年上升趋势。流感的高峰期通常在每年 1 月左右。CCF 分析结果表明,所有 10 个环境指标对流感发病率均有显著影响。ARIMAX(0,0,1)(1,0,0)with PM(lag5)模型的预测性能最佳,AIC、AICc 和 BIC 值最低,分别为 529.740、530.360 和 542.910。模型拟合的 RMSE 为 2.999,预测的 RMSE 为 12.033。

结论

本研究探讨了环境指标对福州流感发病率的影响。ARIMAX(0,0,1)(1,0,0)with PM(lag5)模型可为制定流感防控政策和公共卫生干预措施提供科学依据。及时预测流感发病率对于制定有效的疫情防控策略和降低疾病传播风险至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7314/11456462/a1064a4bdd11/fpubh-12-1441240-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验