Suppr超能文献

血浆生物标志物在心力衰竭预测、管理和预后中的潜力:多组学视角

Potential of plasma biomarkers for heart failure prediction, management, and prognosis: A multiomics perspective.

作者信息

Zou Erhou, Xu Xinjie, Chen Liang

机构信息

State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Heart Fail Rev. 2025 Jan;30(1):55-67. doi: 10.1007/s10741-024-10443-5. Epub 2024 Oct 8.

Abstract

Heart failure (HF) remains a major global health challenge, and more effective and comprehensive plasma biomarkers are needed to effectively treat HF patients. Multiomics studies have shown that DNA fragments, noncoding RNAs, proteins, and metabolites may be potential plasma biomarkers for HF. However, comprehensive reviews that focus on research on plasma biomarkers for HF from an omics perspective are lacking. This review summarizes the applications of various omics approaches in the exploration of biomarkers related to the risk assessment, diagnosis, subtype classification, medical management, and prognosis prediction of HF. Moreover, as heart transplantation and left ventricular assistant device (LVAD) implantation are terminal therapies for end-stage HF patients, this review also discusses the role of cell-free DNA as a biomarker for cardiac transplant rejection and omics studies of plasma biomarkers in patients who respond to LVAD therapy. Our findings suggest that future omics research on HF biomarkers should employ integrated multiomics methods and expand the sample size to increase the robustness of the results and that the identified biomarkers should be further validated in large cohorts.

摘要

心力衰竭(HF)仍然是一项重大的全球健康挑战,需要更有效、更全面的血浆生物标志物来有效治疗HF患者。多组学研究表明,DNA片段、非编码RNA、蛋白质和代谢物可能是HF潜在的血浆生物标志物。然而,缺乏从组学角度聚焦HF血浆生物标志物研究的综合综述。本综述总结了各种组学方法在探索与HF风险评估、诊断、亚型分类、医疗管理和预后预测相关的生物标志物中的应用。此外,由于心脏移植和左心室辅助装置(LVAD)植入是终末期HF患者的终极治疗方法,本综述还讨论了游离DNA作为心脏移植排斥反应生物标志物的作用以及对LVAD治疗有反应的患者血浆生物标志物的组学研究。我们的研究结果表明,未来关于HF生物标志物的组学研究应采用综合多组学方法并扩大样本量以增强结果的稳健性,并且所确定的生物标志物应在大型队列中进一步验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验