Suppr超能文献

基于计算机模拟的天然分子作为群体感应抑制剂的表征方案

Protocol for in silico characterization of natural-based molecules as quorum-sensing inhibitors.

作者信息

Fernandes Susana, Sousa Mariana, Martins Fábio G, Simões Manuel, Sousa Sérgio F

机构信息

LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

LAQV/REQUIMTE, BioSIM, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.

出版信息

STAR Protoc. 2024 Dec 20;5(4):103367. doi: 10.1016/j.xpro.2024.103367. Epub 2024 Oct 7.

Abstract

The search and development of new quorum-sensing (QS) inhibitors are ongoing processes for biofilm control. Here, we present a protocol for in silico characterization of natural-based molecules as QS inhibitors. We describe steps for preparing models of protein receptors for virtual screening. We then detail procedures for construction and virtual screening of phytochemical libraries and hit picking to be experimentally validated by in vitro assays. This protocol allows exploration of a broad range of potential inhibitors for a specific target. For complete details on the use and execution of this protocol, please refer to Fernandes et al..

摘要

寻找和开发新型群体感应(QS)抑制剂是控制生物膜的持续过程。在此,我们提出了一种用于基于天然的分子作为QS抑制剂的计算机模拟表征的方案。我们描述了制备用于虚拟筛选的蛋白质受体模型的步骤。然后,我们详细介绍了植物化学文库的构建和虚拟筛选以及命中物挑选的程序,这些命中物将通过体外试验进行实验验证。该方案允许探索针对特定靶点的广泛潜在抑制剂。有关该方案的使用和执行的完整详细信息,请参考费尔南德斯等人的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd60/11492069/8e646f6388d0/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验