Suppr超能文献

电化学材料的表面科学与工程

Surface Science and Engineering for Electrochemical Materials.

作者信息

Liang Zhiming, Nafis Mohammad Sufiyan, Rodriguez Dakota, Ban Chunmei

机构信息

Paul M. Randy Department of Mechanical Engineering, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, Colorado 80309, United States.

Materials Science and Engineering Program, College of Engineering and Applied Science, University of Colorado Boulder, Boulder, Colorado 80309, United States.

出版信息

Acc Chem Res. 2024 Nov 5;57(21):3102-3112. doi: 10.1021/acs.accounts.4c00433. Epub 2024 Oct 8.

Abstract

ConspectusIn electrochemical energy storage systems, the reversible storage capacity of battery materials often degrades due to parasitic reactions at the electrode-electrolyte interface, transitional metal dissolution, and metallic dendrite growth at the surface. Surface engineering techniques offer the opportunity to modify the composition and structure of a surface, thereby enabling control over chemical reactions occurring at the surface and manipulating chemical interactions at the solid-solid or solid-liquid interface. These modifications can help stabilize the surface of electrode materials and prevent unwanted reactions with electrolytes without changing the original properties of the bulk structure. This allows for achieving full theoretical capacity and maximizing battery material capacity retention with minimal overpotentials. In the past decade, our teams have been working on developing a variety of surface engineering techniques. These include applying atomic and molecular layer deposition (ALD and MLD), templating, doping, and coating via wet-chemical processes to stabilize the surfaces of electrode materials. The aim is to mitigate parasitic side-reactions without impeding charge transfer kinetics, suppress dendrite growth, and ultimately improve the electrode performance.This Account summarizes the research conducted in our research laboratory with an aim to improve battery cycling durability and efficiency by modifying electrode surfaces. We have employed techniques such as ALD, MLD, templating, and wet-chemical processes to illustrate how the stabilized surface improves the performance of lithium-ion (Li-ion), solid-state electrolytes and magnesium-metal (Mg-metal) batteries. For instance, by applying ultrathin layers of inorganic (e.g., AlO) or organic-inorganic coatings (e.g., alucone, lithicone, and polyamides) to the surface of LiNiMnCoO ( + + = 1, NMC) and silicon (Si) electrodes─usually just a few angstroms or nanometers thick─we have observed notable improvements in cycling efficiency and durability. When using ultrathick electrodes, the traditional electrode fabrication has a problem with high tortuosity, which hinders both rate capability and long-term cycling. To solve this issue, three-dimensional templates have been employed to reduce electrode tortuosity, enabling high-rate performance and long-term cycling. In the case of Mg-metal batteries, the buildup of an insulating MgO layer due to side reactions with electrolytes blocks Mg ion transport, which can ultimately cause the battery to fail. To address this issue, we have developed an artificial solid-electrolyte interface using cyclized polyacrylonitrile and magnesium trifluoromethanesulfonate. This interface prevents the reduction of the carbonate electrolyte while allowing Mg diffusion, ultimately boosting overall cell performance.This Account also discusses the significance of choosing suitable materials and effective surface engineering methods with the objective of enhancing surface properties while preserving the bulk properties of the electrodes. It is believed that surface modification and engineering can not only significantly improve the electrochemical performance of existing battery materials but also facilitate the development of new battery materials that were previously incompatible with current electrolytes. By highlighting these aspects, this Account underscores the transformative potential of surface modification and engineering in battery technology, paving the way for future innovations in energy storage solutions.

摘要

综述

在电化学储能系统中,电池材料的可逆存储容量常常会因电极 - 电解质界面处的寄生反应、过渡金属溶解以及表面金属枝晶生长而降低。表面工程技术提供了改变表面组成和结构的机会,从而能够控制表面发生的化学反应,并操纵固 - 固或固 - 液界面处的化学相互作用。这些改性有助于稳定电极材料的表面,防止与电解质发生不必要的反应,同时不改变整体结构的原始性质。这使得能够实现完全理论容量,并以最小的过电位最大化电池材料的容量保持率。在过去十年中,我们的团队一直致力于开发各种表面工程技术。这些技术包括应用原子层沉积(ALD)和分子层沉积(MLD)、模板法、掺杂以及通过湿化学工艺进行涂层,以稳定电极材料的表面。目的是减轻寄生副反应,同时不阻碍电荷转移动力学,抑制枝晶生长,并最终提高电极性能。

本综述总结了我们研究实验室为通过修饰电极表面来提高电池循环耐久性和效率而开展的研究。我们采用了诸如ALD、MLD、模板法和湿化学工艺等技术,以说明表面稳定化如何改善锂离子(Li - ion)电池、固态电解质和镁金属(Mg - metal)电池的性能。例如,通过在LiNiMnCoO(Li + Ni + Mn + Co = 1,NMC)和硅(Si)电极表面涂覆超薄的无机层(如AlO)或有机 - 无机涂层(如铝氧烷、锂硅氧烷和聚酰胺)——通常只有几埃或几纳米厚——我们观察到循环效率和耐久性有了显著提高。当使用超厚电极时,传统的电极制造存在高曲折度的问题,这阻碍了倍率性能和长期循环。为了解决这个问题,采用了三维模板来降低电极曲折度,实现高倍率性能和长期循环。在镁金属电池的情况下,与电解质的副反应导致绝缘MgO层的形成,阻碍了Mg离子传输,最终可能导致电池失效。为了解决这个问题,我们使用环化聚丙烯腈和三氟甲磺酸镁开发了一种人工固体电解质界面。该界面可防止碳酸盐电解质的还原,同时允许Mg扩散,最终提高整体电池性能。

本综述还讨论了选择合适材料和有效表面工程方法的重要性,目的是在保持电极整体性质的同时增强表面性质。人们认为,表面改性和工程不仅可以显著提高现有电池材料的电化学性能,还可以促进以前与当前电解质不相容的新型电池材料的开发。通过强调这些方面,本综述强调了表面改性和工程在电池技术中的变革潜力,为储能解决方案的未来创新铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验