Qian Youfen, Liu Xiaobo, Hu Pengfei, Gao Lin, Gu Ji-Dong
Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China.
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, Jiangsu 210094, China.
Sci Total Environ. 2024 Dec 1;954:176757. doi: 10.1016/j.scitotenv.2024.176757. Epub 2024 Oct 6.
Microbial activities and biochemical reactions are responsible for the biodeterioration of stone cultural heritage, but information on microbial metabolic potentials remains elusive. Here we profiled microbial community signatures and its functional traits on stone cultural heritage from different climate zones globally using sequencing datasets available publicly. Bacterial community on stone cultural heritage shows a significant separation between BSk (cold semi-arid climate) and Cfb (temperate oceanic climate) with Aw (tropical savanna climate) as a transition region. Importantly, the ubiquity of ammonia oxidizers and nitrite oxidizers on stone cultural heritage under different climates supports the active production and accumulation of nitrates while ammonia/ammonium can be supplied by dinitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA), together with the hydrolysis of urea, arginine, formamide and cyanate. Sulfate accumulation on stone cultural heritage is mainly resulted from the microbial-driven transformation of organosulfur and thiosulfate, with little dissimilatory reduction of sulfate. Pseudorhodoplanes was identified and reported in elemental sulfur turnover for the first time. Notably, carbon sequestration via the reductive tricarboxylic acid (rTCA) cycle and an incomplete 3-hydroxypropionate/4-hydroxybutynate (HP/HB) cycle other than the Calvin Benson-Bassham (CBB) cycle is also significant on stone cultural heritage under relatively humid climate. These results advance our understanding of microbial metabolic potentials and their genetical partitioning patterns on stone cultural heritage of different climate zones globally.
微生物活动和生化反应是导致石质文化遗产生物劣化的原因,但关于微生物代谢潜力的信息仍然难以捉摸。在此,我们利用公开可用的测序数据集,对全球不同气候区石质文化遗产上的微生物群落特征及其功能特性进行了剖析。石质文化遗产上的细菌群落显示,在BSk(寒冷半干旱气候)和Cfb(温带海洋性气候)之间存在显著分离,Aw(热带稀树草原气候)作为过渡区域。重要的是,不同气候条件下石质文化遗产上氨氧化菌和亚硝酸盐氧化菌的普遍存在支持了硝酸盐的活跃产生和积累,而氨/铵可以通过固氮作用和异化硝酸盐还原为铵(DNRA),以及尿素、精氨酸、甲酰胺和氰酸盐的水解来提供。石质文化遗产上硫酸盐的积累主要源于微生物驱动的有机硫和硫代硫酸盐的转化,硫酸盐的异化还原作用较小。首次在元素硫周转中鉴定并报道了假红平菌属。值得注意地是,在相对潮湿的气候条件下,石质文化遗产上通过还原性三羧酸(rTCA)循环和不完全的3-羟基丙酸/4-羟基丁酸(HP/HB)循环而非卡尔文-本森-巴斯姆(CBB)循环进行的碳固存也很显著。这些结果推进了我们对全球不同气候区石质文化遗产上微生物代谢潜力及其遗传分配模式的理解。