Lin Jian, Wang Feipeng, Wang Jinkai, Xu Zhixin, Yang Minghan, Hong Bing, Yong Nuo, Xia Dongqin, Ge Daochuan, Shen Shuifa
State Key Laboratory of Nuclear Power Safety Technology and Equipment, China Nuclear Power Engineering Co., Ltd., Shenzhen, 518172, China.
Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
Sci Rep. 2024 Oct 8;14(1):23399. doi: 10.1038/s41598-024-75096-8.
In this study, a feasibility of γ radiation detection using complementary metal-oxide semiconductor (CMOS) image sensors with a neural network algorithm to extract the γ rays interacted pixels has been investigated. The responses characteristics of the CMOS imaging sensor to γ-ray is studied by placed in a γ fields produced by standardCo orCs isotope sources. The supported preview frame rate of the CMOS image sensor is 25 fps, establishing the functional relationship between the gray level histograms and the dose rate through the neural network, the high energy γ-ray fromCo andCs source radiation dose rate in µSv/h level can be detected using the CMOS imaging sensor. The results show that the proposed method can effectively identify the number of photon particles which detected by the radiation monitoring system based on CMOS image sensor, and infer that the CMOS imaging sensor with a radiation signal extraction algorithm can be used as a dose warner for radiation protection purpose.
在本研究中,研究了使用互补金属氧化物半导体(CMOS)图像传感器结合神经网络算法来提取与γ射线相互作用像素的γ辐射检测的可行性。通过将CMOS成像传感器置于由标准钴或铯同位素源产生的γ场中,研究了其对γ射线的响应特性。CMOS图像传感器支持的预览帧率为25帧/秒,通过神经网络建立灰度直方图与剂量率之间的函数关系,利用CMOS成像传感器可检测来自钴和铯源辐射的高能γ射线在微希沃特/小时水平的剂量率。结果表明,所提出的方法能够有效识别基于CMOS图像传感器的辐射监测系统检测到的光子粒子数量,并推断具有辐射信号提取算法的CMOS成像传感器可作为辐射防护目的的剂量报警器。