Suppr超能文献

基于机器学习的 3D 动态 SERS 策略用于生理图谱绘制:环境维度老化纳米塑料的生物毒性及其相应的蛋白冠复合物。

Machine Learning-Aided 3D Dynamic SERS Strategy for Physiological Mapping: Biotoxicity of Environmentally Dimensional Aged Nanoplastics and Corresponding Protein Corona Complexes.

机构信息

College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

Xiangjiang Laboratory, Changsha 410205, China.

出版信息

Anal Chem. 2024 Oct 22;96(42):16629-16638. doi: 10.1021/acs.analchem.4c02701. Epub 2024 Oct 9.

Abstract

Nanoplastics (NPs) are emerging pollutants that undergo inevitable aging in the environment, raising concerns about human exposure and health hazards. Research on the cytotoxicity of various polymer types of NPs, aged nanoplastics (aNPs), and their interactions with proteins (aNPs-protein corona) is still nascent. Traditional cytotoxicity detection methods often rely on end point assays with restricted temporal resolution and analysis of single or multiple biomarkers. Here, we propose a novel approach integrating the 3D dynamic SERS strategy (DSS) with machine learning to rapidly analyze the cell fate and death modes induced by NPs, aNPs, and aNPs-protein corona complexes at the molecular level. PS, PVC, PMMA, and PC products from the water environment were used to prepare the corresponding NPs, and the impact of UV irradiation on their physicochemical properties was examined. DSS systematically maps the molecular changes in the cellular secretome caused by these NPs. Machine learning effectively extracts information from complex spectra, differentiating between biological samples. Results show prolonged UV exposure increases cell sensitivity to ferroptosis and cytotoxicity in various aNPs, while the protein corona on aNPs significantly mitigates toxicity associated with surface oxygen-containing functional groups, resulting in a reduced similarity to ferroptosis signatures. 3D DSS with machine learning technique analyzes the overall metabolite profile at the molecular level rather than individual biomarkers. This study is the first attempt to compare the biotoxicity of diverse polymer NPs, aNPs, and aNPs-protein coronas at cellular and molecular levels in human hepatocytes, enhancing our understanding of the complex biological impacts of NPs.

摘要

纳米塑料(NPs)是新兴的污染物,在环境中不可避免地会发生老化,引起人们对人类暴露和健康危害的关注。对各种聚合物类型的 NPs、老化纳米塑料(aNPs)及其与蛋白质相互作用(aNPs-蛋白冠)的细胞毒性研究还处于起步阶段。传统的细胞毒性检测方法通常依赖于终点分析,具有有限的时间分辨率,并且只能分析单个或多个生物标志物。在这里,我们提出了一种新的方法,将 3D 动态 SERS 策略(DSS)与机器学习相结合,用于快速分析 NPs、aNPs 和 aNPs-蛋白冠复合物在分子水平上诱导的细胞命运和死亡模式。从水环境中提取 PS、PVC、PMMA 和 PC 制品来制备相应的 NPs,并研究了 UV 照射对其理化性质的影响。DSS 系统地绘制了这些 NPs 引起的细胞分泌组中分子变化的图谱。机器学习有效地从复杂的光谱中提取信息,对生物样本进行区分。结果表明,延长 UV 暴露时间会增加各种 aNPs 中细胞对铁死亡和细胞毒性的敏感性,而 aNPs 上的蛋白冠显著减轻了与表面含氧官能团相关的毒性,导致与铁死亡特征的相似性降低。具有机器学习技术的 3D DSS 可以在分子水平上分析整体代谢物谱,而不是单个生物标志物。这项研究首次尝试在人肝细胞中比较不同聚合物 NPs、aNPs 和 aNPs-蛋白冠的细胞毒性和分子水平的生物毒性,增强了我们对 NPs 复杂生物学影响的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验