Suppr超能文献

用于微血管三维生物打印的小分子海藻酸盐凝胶致孔剂

Small molecular weight alginate gel porogen for the 3D bioprinting of microvasculature.

作者信息

Vanlauwe Florian, Dermaux Charlotte, Shamieva Sabina, Vermeiren Stef, Van Vlierberghe Sandra, Blondeel Phillip

机构信息

Tissue Regeneration and Organ Printing (TROP) Research Center, Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium.

Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium.

出版信息

Front Bioeng Biotechnol. 2024 Sep 24;12:1452477. doi: 10.3389/fbioe.2024.1452477. eCollection 2024.

Abstract

In order to recreate the complexity of human organs, the field of tissue engineering and regenerative medicine has been focusing on methods to build organs from the bottom up by assembling distinct small functional units consisting of a biomaterial and cells. This bottom-up engineering requires bioinks that can be assembled by 3D bioprinting and that permit fast vascularization of the construct to ensure survival of embedded cells. To this end, a small molecular weight alginate (SMWA) gel porogen is presented herein. Alginate is a biocompatible biomaterial, which can be easily converted into small porogen gels with the procedure reported in this article. The SMWA porogen is mixed with photo-crosslinkable hydrogels and leached from the hydrogel post-crosslinking to increase porosity and facilitate vascularization. As a proof of concept, this system is tested with the commonly used biomaterial Gelatin Methacryloyl (GelMA). The SMWA porogen-GelMA blend is proven to be bioprintable. Incubating the blend for 20 min in a low concentration phosphate buffered saline and sodium citrate solution significantly reduces the remaining porogen in the hydrogel . The intent to completely leach the porogen from the hydrogel was abandoned, as longer incubation times and higher concentrations of phosphate and citrate were detrimental to endothelial proliferation. Nonetheless, even with remnants of the porogen left in the hydrogel, the created porosity significantly improves viability, growth factor signaling, vasculogenesis, and angiogenesis in 3D bioprinted structures. This article concludes that the usage of the SMWA porogen can improve the assembly of microvasculature in 3D bioprinted structures. This technology can benefit the bottom-up assembly of large scaffolds with high cell density through 3D bioprinting by improving cell viability and allowing faster vascularization.

摘要

为了重现人体器官的复杂性,组织工程与再生医学领域一直致力于通过组装由生物材料和细胞组成的不同小型功能单元自下而上构建器官的方法。这种自下而上的工程需要能够通过3D生物打印进行组装且能使构建体快速血管化以确保嵌入细胞存活的生物墨水。为此,本文提出了一种小分子量海藻酸盐(SMWA)凝胶致孔剂。海藻酸盐是一种生物相容性生物材料,通过本文报道的方法可轻松转化为小型致孔剂凝胶。SMWA致孔剂与可光交联水凝胶混合,并在交联后从水凝胶中沥出以增加孔隙率并促进血管化。作为概念验证,该系统用常用生物材料甲基丙烯酰化明胶(GelMA)进行了测试。事实证明,SMWA致孔剂 - GelMA混合物是可生物打印的。将该混合物在低浓度磷酸盐缓冲盐水和柠檬酸钠溶液中孵育20分钟可显著减少水凝胶中剩余的致孔剂。由于更长的孵育时间以及更高浓度的磷酸盐和柠檬酸盐对内皮细胞增殖有害,因此放弃了将致孔剂从水凝胶中完全沥出的想法。尽管如此,即使水凝胶中留有致孔剂残余物,所形成的孔隙率仍能显著提高3D生物打印结构中的细胞活力、生长因子信号传导、血管发生和血管生成。本文得出结论,使用SMWA致孔剂可改善3D生物打印结构中微脉管系统的组装。该技术通过提高细胞活力并实现更快的血管化,可有益于通过3D生物打印自下而上组装具有高细胞密度的大型支架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6788/11458444/f92c731e9710/fbioe-12-1452477-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验