Suppr超能文献

用于修复大段骨缺损的原位血管化组织工程骨的3D生物打印

3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects.

作者信息

Shen Mingkui, Wang Lulu, Gao Yi, Feng Li, Xu Chuangye, Li Sijing, Wang Xiaohu, Wu Yulan, Guo Yao, Pei Guoxian

机构信息

School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.

Department of Orthopedics, Affiliated to Zhengzhou University, Zhengzhou, 450007, China.

出版信息

Mater Today Bio. 2022 Aug 8;16:100382. doi: 10.1016/j.mtbio.2022.100382. eCollection 2022 Dec.

Abstract

Large bone defects remain an unsolved clinical challenge because of the lack of effective vascularization in newly formed bone tissue. 3D bioprinting is a fabrication technology with the potential to create vascularized bone grafts with biological activity for repairing bone defects. In this study, vascular endothelial cells laden with thermosensitive bio-ink were bioprinted in situ on the inner surfaces of interconnected tubular channels of bone mesenchymal stem cell-laden 3D-bioprinted scaffolds. Endothelial cells exhibited a more uniform distribution and greater seeding efficiency throughout the channels. In vitro, the in situ bioprinted endothelial cells can form a vascular network through proliferation and migration. The in situ vascularized tissue-engineered bone also resulted in a coupling effect between angiogenesis and osteogenesis. Moreover, RNA sequencing analysis revealed that the expression of genes related to osteogenesis and angiogenesis is upregulated in biological processes. The in vivo 3D-bioprinted in situ vascularized scaffolds exhibited excellent performance in promoting new bone formation in rat calvarial critical-sized defect models. Consequently, in situ vascularized tissue-engineered bones constructed using 3D bioprinting technology have a potential of being used as bone grafts for repairing large bone defects, with a possible clinical application in the future.

摘要

由于新形成的骨组织中缺乏有效的血管化,大的骨缺损仍然是一个尚未解决的临床挑战。3D生物打印是一种制造技术,有潜力制造出具有生物活性的血管化骨移植物来修复骨缺损。在本研究中,将负载热敏生物墨水的血管内皮细胞原位生物打印在负载骨间充质干细胞的3D生物打印支架的相互连接的管状通道内表面。内皮细胞在整个通道中表现出更均匀的分布和更高的接种效率。在体外,原位生物打印的内皮细胞可通过增殖和迁移形成血管网络。原位血管化的组织工程骨还导致血管生成和成骨之间的耦合效应。此外,RNA测序分析显示,在生物学过程中,与成骨和血管生成相关的基因表达上调。在大鼠颅骨临界尺寸缺损模型中,体内3D生物打印的原位血管化支架在促进新骨形成方面表现出优异的性能。因此,使用3D生物打印技术构建的原位血管化组织工程骨有潜力用作修复大骨缺损的骨移植物,未来可能应用于临床。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9a1/9403505/4aa782267367/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验