Distaso Monica, Abella Erika
Friedrich-Alexander University Erlangen-Nürnberg, Interdisciplinary Center for Functional Particle Systems, Haberstraße 9a, 91058, Erlangen, Germany.
Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstr. 1, 91058, Erlangen, Germany.
Chempluschem. 2024 Dec;89(12):e202400151. doi: 10.1002/cplu.202400151. Epub 2024 Oct 9.
The challenges in the fuel cell industry lie in the cost, performance, and durability of the electrode components, especially the platinum-based catalysts. Alloying has been identified as an effective strategy to reduce the cost of the catalyst and increase its efficiency and durability. So far, most studies focused on the design of PtM bimetallic nanocatalyst, where M is a transition metal. The resulting PtM materials show higher catalytic activity, but their stability remained challenging. In addition, most of the transition metals M are expensive or low abundant. Tin (Sn) has gained attention as alloying element due to its versatility in manufacturing both anode and cathode electrodes. If used as anode catalyst, it is able to overcome poisoning from CO and related intermediates. As cathode catalyst, it improves the kinetics of the oxygen reduction reaction (ORR). Additionally, Sn is an abundant and cheap element. The current contribution outlines the state of the art on the alloy and shape effect on PtSn activity and stability, demonstrating its high potential to develop cheaper, more efficient and durable catalysts for fuel-cell electrodes. Additionally, in situ analytical and spectroscopic studies can shed light on the elementary steps involved in the use of PtSn catalytic systems. Finally, this intriguing material can be used as a parent system for the synthesis of high-entropy-alloys and intermetallics materials.
燃料电池行业面临的挑战在于电极组件的成本、性能和耐久性,尤其是基于铂的催化剂。合金化已被视为一种降低催化剂成本、提高其效率和耐久性的有效策略。到目前为止,大多数研究集中在PtM双金属纳米催化剂的设计上,其中M为过渡金属。所得的PtM材料表现出更高的催化活性,但其稳定性仍然具有挑战性。此外,大多数过渡金属M价格昂贵或储量较低。锡(Sn)因其在制造阳极和阴极电极方面的多功能性而作为合金元素受到关注。如果用作阳极催化剂,它能够克服CO和相关中间体的中毒问题。作为阴极催化剂,它改善了氧还原反应(ORR)的动力学。此外,Sn是一种储量丰富且廉价的元素。本论文概述了合金及形状对PtSn活性和稳定性影响的研究现状,证明了其在开发更便宜、更高效和更耐用的燃料电池电极催化剂方面的巨大潜力。此外,原位分析和光谱研究可以揭示PtSn催化体系使用过程中涉及的基本步骤。最后,这种有趣的材料可以用作合成高熵合金和金属间化合物材料的母体体系。