Water Quality Engineering, Technical University of Berlin, Berlin, Germany.
Marine Science Institute/Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA.
mBio. 2024 Nov 13;15(11):e0237224. doi: 10.1128/mbio.02372-24. Epub 2024 Oct 9.
Microbial processes operate at the microscale, which is not resolved by existing ecosystem models. Here, we present a novel model that simulates a 1 mL three-dimensional cube using a hybrid Lagrangian-Eulerian approach, at ecologically relevant timescales. The model simulates individual microbes, including three phytoplankton size classes with healthy, senescent, and dead lifecycle stages; copiotrophic and oligotrophic heterotrophic bacteria; and dissolved organic matter at 50 µm resolution. Diffusion, shear, sedimentation, chemotaxis, and attachment processes are explicitly resolved. The emerging quantitative representation of the ecosystem shows that (1) copiotrophs grow mostly attached to eukaryotic phytoplankters and get almost all of their carbon from them vs. oligotrophs that grow on exudates and lysates of cyanobacteria; (2) contrasting diel patterns in substrate appearance in the phycosphere vs. ambient water and growth of particle-associated copiotrophs vs. free-living oligotrophs; (3) attached bacteria reduce carbon flux from the phycosphere, lowering chemotactic efficiency toward eukaryotes below that toward cyanobacteria; (4) shear reduces chemotactic efficiency and fitness of the copiotroph; and (5) the main benefit of chemotaxis is to locate attachment partners. These patterns are consistent with available observations. Our study provides insights into the microscale ecology of marine bacteria, and the open-source code is a tool for further research in this area.IMPORTANCEA large amount of global CO fixation is performed by marine phytoplankton, and a substantial fraction of that is released as dissolved organic carbon and further processed by heterotrophic bacteria. The interaction between phytoplankton and bacteria, i.e., the carbon flux between them, is therefore an important process in the global carbon and climate system. Some bacteria have developed specialized behavioral traits, like swimming and attachment, to increase their carbon acquisition. These interactions occur at the micrometer scale, for example, the immediate vicinity of phytoplankters (the phycosphere), but existing biogeochemical models typically only simulate down to the 1 meter vertical or ~100 kilometer horizontal scale. We present a new microscale model and use it to predict fluxes and other features in the surface ocean. The model makes important predictions about the fluxes between various types of phytoplankton and bacteria and the role of behavioral traits, and it provides a basis and tool for further research in this area.
微生物过程在微观尺度上运行,这是现有生态系统模型无法解决的。在这里,我们提出了一种新的模型,该模型使用混合拉格朗日-欧拉方法在生态相关的时间尺度上模拟一个 1 毫升的三维立方体。该模型模拟了单个微生物,包括具有健康、衰老和死亡生命周期阶段的三种浮游植物大小类群;以及富营养和贫营养异养细菌;和 50 µm 分辨率的溶解有机物。扩散、剪切、沉降、趋化和附着过程被明确解决。新兴的生态系统定量表示表明:(1) 富营养菌主要附着在真核浮游植物上,并从它们那里获得几乎所有的碳,而贫营养菌则在蓝藻的分泌物和溶解物上生长;(2) 与周围水中的基质相比,在浮游植物圈内出现昼夜相反的模式,以及颗粒附着的富营养菌与自由生活的贫营养菌的生长;(3) 附着细菌减少了从浮游植物圈内的碳通量,使真核生物的趋化效率低于蓝藻;(4) 剪切降低了富营养菌的趋化效率和适应性;(5) 趋化作用的主要好处是定位附着伙伴。这些模式与现有观察结果一致。我们的研究提供了对海洋细菌微观生态学的深入了解,并且开源代码是该领域进一步研究的工具。
海洋浮游植物进行了大量的全球 CO 固定,其中很大一部分以溶解有机碳的形式释放,并进一步被异养细菌加工。因此,浮游植物和细菌之间的相互作用,即它们之间的碳通量,是全球碳和气候系统中的一个重要过程。一些细菌已经发展出了专门的行为特征,例如游泳和附着,以增加它们的碳获取。这些相互作用发生在微米尺度上,例如,在浮游植物的直接附近(浮游植物圈),但现有的生物地球化学模型通常只能模拟到 1 米的垂直或 ~100 公里的水平尺度。我们提出了一种新的微尺度模型,并使用它来预测海洋表面的通量和其他特征。该模型对各种类型的浮游植物和细菌之间的通量以及行为特征的作用做出了重要预测,并为该领域的进一步研究提供了基础和工具。