Suppr超能文献

海洋贫营养生物和富营养生物在调控策略上的差异反映了它们在运动性上的差异。

Differences in the regulatory strategies of marine oligotrophs and copiotrophs reflect differences in motility.

机构信息

Department of Microbiology, Oregon State University, Corvallis, Oregon, USA.

Center for Quantitative Life Sciences, Oregon State University, Oregon, USA.

出版信息

Environ Microbiol. 2023 Jul;25(7):1265-1280. doi: 10.1111/1462-2920.16357. Epub 2023 Mar 4.

Abstract

Aquatic bacteria frequently are divided into lifestyle categories oligotroph or copiotroph. Oligotrophs have proportionately fewer transcriptional regulatory genes than copiotrophs and are generally non-motile/chemotactic. We hypothesized that the absence of chemotaxis/motility in oligotrophs prevents them from occupying nutrient patches long enough to benefit from transcriptional regulation. We first confirmed that marine oligotrophs are generally reduced in genes for transcriptional regulation and motility/chemotaxis. Next, using a non-motile oligotroph (Ca. Pelagibacter st. HTCC7211), a motile copiotroph (Alteromonas macleodii st. HOT1A3), and [ C]l-alanine, we confirmed that l-alanine catabolism is not transcriptionally regulated in HTCC7211 but is in HOT1A3. We then found that HOT1A3 took 2.5-4 min to initiate l-alanine oxidation at patch l-alanine concentrations, compared to <30 s for HTCC7211. By modelling cell trajectories, we predicted that, in most scenarios, non-motile cells spend <2 min in patches, compared to >4 min for chemotactic/motile cells. Thus, the time necessary for transcriptional regulation to initiate prevents transcriptional regulation from being beneficial for non-motile oligotrophs. This is supported by a mechanistic model we developed, which predicted that HTCC7211 cells with transcriptional regulation of l-alanine metabolism would produce 12% of their standing ATP stock upon encountering an l-alanine patch, compared to 880% in HTCC7211 cells without transcriptional regulation.

摘要

水生细菌通常分为寡营养型或富营养型生活方式类别。寡营养型细菌的转录调控基因比例比富营养型细菌少,通常是非运动/化学趋性的。我们假设寡营养型细菌缺乏趋化性/运动性,使它们无法在营养斑块中停留足够长的时间,从而从转录调控中受益。我们首先证实海洋寡营养型细菌的转录调控和运动/趋化性基因普遍减少。接下来,使用非运动型寡营养型菌(Ca. Pelagibacter st. HTCC7211)、运动型富营养型菌(Alteromonas macleodii st. HOT1A3)和[C]l-丙氨酸,我们证实 HTCC7211 中 l-丙氨酸代谢不受转录调控,但 HOT1A3 中受转录调控。然后我们发现,与 HTCC7211 相比,HOT1A3 在斑块 l-丙氨酸浓度下启动 l-丙氨酸氧化需要 2.5-4 分钟,而 HTCC7211 则<30 秒。通过模拟细胞轨迹,我们预测在大多数情况下,非运动细胞在斑块中的停留时间<2 分钟,而化学趋性/运动细胞的停留时间>4 分钟。因此,启动转录调控所需的时间使转录调控对非运动型寡营养型细菌没有益处。我们开发的一个机制模型支持了这一观点,该模型预测 HTCC7211 细胞如果对 l-丙氨酸代谢进行转录调控,在遇到 l-丙氨酸斑块时,其 ATP 库存的 12%将被消耗,而未经转录调控的 HTCC7211 细胞的 ATP 库存将消耗 880%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验