Suppr超能文献

通过深度学习实现的自主扫描隧道显微镜成像

Autonomous Scanning Tunneling Microscopy Imaging via Deep Learning.

作者信息

Zhu Zhiwen, Yuan Shaoxuan, Yang Quan, Jiang Hao, Zheng Fengru, Lu Jiayi, Sun Qiang

机构信息

Materials Genome Institute, Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China.

Materials Genome Institute, Shanghai University, Shanghai 200444, China.

出版信息

J Am Chem Soc. 2024 Oct 23;146(42):29199-29206. doi: 10.1021/jacs.4c11674. Epub 2024 Oct 9.

Abstract

Scanning tunneling microscopy (STM) is a powerful technique that provides the ability to manipulate and characterize individual atoms and molecules with atomic-level precision. However, the processes of scanning samples, operating the probe, and analyzing data are typically labor-intensive and subjective. Deep learning (DL) techniques have shown immense potential in automating complex tasks and solving high-dimensional problems. In this study, we developed an autonomous STM framework powered by DL to enable autonomous operations of the STM without human interventions. Our framework employs a convolutional neural network (CNN) for real-time evaluation of STM image quality, a U-net model for identifying bare surfaces, and a deep Q-learning network (DQN) agent for autonomous probe conditioning. Additionally, we integrated an object recognition model for the automated recognition of different adsorbates. This autonomous framework enables the acquisition of space-averaging information using STM techniques without compromising the high-resolution molecular imaging. We achieved measuring an area of approximately 1.9 μm within 48 h of continuous measurement and automatedly generated the statistics on the molecular species present within the mesoscopic area. We demonstrate the high robustness of the framework by conducting measurements at the liquid nitrogen temperature (∼78 K). We envision that the integration of DL techniques and high-resolution microscopy will not only extend the functionality and capability of scanning probe microscopes but also accelerate the understanding and discovery of new materials.

摘要

扫描隧道显微镜(STM)是一种强大的技术,能够以原子级精度操纵和表征单个原子和分子。然而,扫描样品、操作探针和分析数据的过程通常需要大量人力且主观。深度学习(DL)技术在自动化复杂任务和解决高维问题方面显示出巨大潜力。在本研究中,我们开发了一个由DL驱动的自主STM框架,以实现STM的自主操作而无需人工干预。我们的框架采用卷积神经网络(CNN)实时评估STM图像质量,使用U-net模型识别裸露表面,并使用深度Q学习网络(DQN)智能体进行自主探针调节。此外,我们集成了一个用于自动识别不同吸附物的目标识别模型。这个自主框架能够使用STM技术获取空间平均信息,同时不影响高分辨率分子成像。我们在连续测量48小时内实现了对约1.9μm区域的测量,并自动生成了介观区域内存在的分子种类的统计数据。我们通过在液氮温度(约78K)下进行测量,证明了该框架的高鲁棒性。我们设想,DL技术与高分辨率显微镜的结合不仅将扩展扫描探针显微镜的功能和能力,还将加速对新材料的理解和发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验