Materials Genome Institute, Shanghai University, 200444, Shanghai, China.
State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.
Angew Chem Int Ed Engl. 2022 Dec 5;61(49):e202213503. doi: 10.1002/anie.202213503. Epub 2022 Nov 4.
Computer vision as a subcategory of deep learning tackles complex vision tasks by dealing with data of images. Molecular images with exceptionally high resolution have been achieved thanks to the development of techniques like scanning probe microscopy (SPM). However, extracting useful information from SPM image data requires careful analysis which heavily relies on human supervision. In this work, we develop a deep learning framework using an advanced computer vision algorithm, Mask R-CNN, to address the challenge of molecule detection, classification and instance segmentation in binary molecular nanostructures. We employ the framework to determine two triangular-shaped molecules of similar STM appearance. Our framework could accurately differentiate two molecules and label their positions. We foresee that the application of computer vision in SPM images will become an indispensable part in the field, accelerating data mining and the discovery of new materials.
计算机视觉作为深度学习的一个分支,通过处理图像数据来处理复杂的视觉任务。得益于扫描探针显微镜(SPM)等技术的发展,已经实现了具有极高分辨率的分子图像。然而,要从 SPM 图像数据中提取有用信息,需要仔细分析,这严重依赖于人工监督。在这项工作中,我们使用先进的计算机视觉算法 Mask R-CNN 开发了一个深度学习框架,以解决在二进制分子纳米结构中进行分子检测、分类和实例分割的挑战。我们使用该框架来确定两个具有相似 STM 外观的三角形分子。我们的框架可以准确地区分两个分子并标记它们的位置。我们预计计算机视觉在 SPM 图像中的应用将成为该领域不可或缺的一部分,加速数据挖掘和新材料的发现。