Suppr超能文献

电纺介孔NiZnFeO - CNT - 中空碳三元复合纳米纤维作为用于先进对称超级电容器的高性能电极

Electrospun Mesoporous NiZnFeO - CNT - Hollow Carbon Ternary Composite Nanofibers as High Performance Electrodes for Advanced Symmetric Supercapacitors.

作者信息

Sudheendra Budhiraju Venkata, Runkana Venkataramana, Sharma Ashutosh, Sivakumar Sri

机构信息

Department of Chemical Engineering, Indian Institute of Technology Kanpur, UP, 208016, Kanpur, India.

Tata Research Development and Design Centre, A Division of Tata Consultancy Services Limited, 54-B, Hadapsar Industrial Estate, Pune, 411013, India.

出版信息

Chem Asian J. 2025 Jan 2;20(1):e202400815. doi: 10.1002/asia.202400815. Epub 2024 Nov 16.

Abstract

Spinel ferrites have attracted considerable interest in energy storage systems due to their unique magnetic, electrical and catalytic properties. However, they suffer from poor electronic conductivity and low specific capacity. We have addressed this limitation by synthesizing composite hollow carbon nanofibers (HCNF) embedded with nanostructured Nickel Zinc Ferrite (NZF) and Multiwalled carbon nanotubes (CNT), through coaxial electrospinning. These ternary composite nanofibers NZF-CNT-HCNF have a high specific capacity of 833 C g at a current density of 1 A g and have a capacity retention of 90 % after 3000 cycles. Their performance is much better than pure NZF fibers (180 C g) or hollow carbon nanofibers (96 C g), suggesting synergy between various constituents of the composite. A symmetric supercapacitor fabricated from NZF-CNT-HCNF composite nanofibers (30 % NZF) has a high specific capacity of 302 C g (302 A g) at a current density of 1 A g and has a capacity retention of 95 % after 5000 cycles. At the same current density, the device has a high energy density of 39 Whkg and power density of 1000 Wkg at a current density of 1 A g. This performance can be attributed to the high specific surface area (776 m g), mesoporosity (pore size ~4 nm), interconnectedness of the nanofibers and high electrical conductivity of CNTs. These fibers can be used as light-weight high performance electrode materials in advanced energy storage devices.

摘要

由于其独特的磁、电和催化性能,尖晶石铁氧体在储能系统中引起了广泛关注。然而,它们存在电子导电性差和比容量低的问题。我们通过同轴静电纺丝合成了嵌入纳米结构镍锌铁氧体(NZF)和多壁碳纳米管(CNT)的复合中空碳纳米纤维(HCNF),解决了这一限制。这些三元复合纳米纤维NZF-CNT-HCNF在1 A g的电流密度下具有833 C g的高比容量,在3000次循环后容量保持率为90%。它们的性能比纯NZF纤维(180 C g)或中空碳纳米纤维(96 C g)要好得多,这表明复合材料的各种成分之间存在协同作用。由NZF-CNT-HCNF复合纳米纤维(30% NZF)制成的对称超级电容器在1 A g的电流密度下具有302 C g(302 A g)的高比容量,在5000次循环后容量保持率为95%。在相同电流密度下,该器件在1 A g的电流密度下具有39 Whkg的高能量密度和1000 Wkg的功率密度。这种性能可归因于高比表面积(776 m g)、中孔率(孔径~4 nm)、纳米纤维的相互连接性以及CNT的高导电性。这些纤维可作为先进储能装置中的轻质高性能电极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验