Riungu Ginson, Muthomi James W, Buechs Wolfgang, Wagacha John M, Philip Esther Sheila, Meiners Torsten
Sugar Research Institute, Kenya Agricultural and Livestock Research Organization, Kisumu, Kenya.
Department of Plant Science and Crop Protection, Faculty of Agriculture, University of Nairobi, Nairobi, Kenya.
J Econ Entomol. 2024 Dec 28;117(6):2249-2258. doi: 10.1093/jee/toae217.
The spread of toxigenic Aspergillus into maize by insects and the subsequent aflatoxin contamination poses a risk to humans and animals and has been investigated in North and South America. To evaluate this effect in an African context, Greenhouse studies were conducted in 2022 to determine the role of sap beetles, Carpophilus dimidiatus Fabricius, 1792 (Coleoptera: Nitidulidae) and maize weevils, Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae) on infection of maize kernels by Aspergillus flavus Link and the resultant aflatoxin accumulation. To test the beetles' efficacy, treatments were applied on partially opened primary ears at 3 different stages of kernel development (BBCH 75, 83, and 87). The treatments were: (i) distilled water, (ii) water with A. flavus spores, (iii) maize grits, (iv) maize grits with A. flavus spores, (v) C. dimidiatus, (vi) C. dimidiatus with A. flavus spores, (vii) S. zeamais, and (viii) S. zeamais with A. flavus spores. Data on kernel infection, maize rotting, yield, and aflatoxin content in kernels were collected. The highest kernel spoilage and yield loss were recorded for the co-inoculation of S. zeamais and A. flavus spores, followed by S. zeamais without A. flavus spores, and then C. dimidiatus with the fungal spores. Inoculation of maize at the BBCH 83 growth stage resulted in the highest kernel damage and aflatoxin contamination. S. zeamais and, to a lesser extent, C. dimidiatus effectively spread the A. flavus inoculum into non-wounded ears, resulting in fungal and aflatoxin contamination. The yield loss from S. zeamais-Aspergillus co-inoculation occurred due to the grain rotting and actual feeding of the maize weevils. Thus, insect management is important in reducing pre-harvest contamination of maize with mycotoxigenic fungi and their resultant toxins.
产毒曲霉菌通过昆虫传播到玉米中,随后产生黄曲霉毒素污染,这对人类和动物构成风险,在北美洲和南美洲已对此展开研究。为了在非洲背景下评估这种影响,于2022年进行了温室研究,以确定露尾甲(Carpophilus dimidiatus Fabricius,1792年,鞘翅目:露尾甲科)和玉米象(Sitophilus zeamais Motschulsky,1855年,鞘翅目:象甲科)在黄曲霉(Aspergillus flavus Link)感染玉米粒以及由此产生的黄曲霉毒素积累过程中所起的作用。为了测试这些甲虫的作用效果,在玉米粒发育的3个不同阶段(BBCH 75、83和87)对部分开放的初生雌穗进行处理。处理方式包括:(i)蒸馏水,(ii)含有黄曲霉孢子的水,(iii)玉米粗粉,(iv)含有黄曲霉孢子的玉米粗粉,(v)露尾甲,(vi)含有黄曲霉孢子的露尾甲,(vii)玉米象,(viii)含有黄曲霉孢子的玉米象。收集了关于玉米粒感染、玉米腐烂、产量以及玉米粒中黄曲霉毒素含量的数据。玉米象和黄曲霉孢子共同接种时,玉米粒腐败和产量损失最高,其次是未接种黄曲霉孢子的玉米象,然后是接种真菌孢子的露尾甲。在BBCH 83生长阶段接种玉米导致玉米粒损伤和黄曲霉毒素污染最为严重。玉米象以及在较小程度上的露尾甲有效地将黄曲霉接种体传播到未受伤的雌穗中,导致真菌和黄曲霉毒素污染。玉米象与黄曲霉共同接种导致的产量损失是由于谷物腐烂以及玉米象的实际取食造成的。因此,虫害管理对于减少玉米收获前被产毒真菌及其毒素污染至关重要。