Center for the Development of Advanced Materials and Nanotechnology, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima, Peru.
Universidad Nacional de San Agustín de Arequipa, Av. Independencia S/N, Arequipa, Peru.
Chemosphere. 2024 Oct;366:143505. doi: 10.1016/j.chemosphere.2024.143505. Epub 2024 Oct 9.
In this study, heterostructures based on Bismuth molybdite/iron oxide (BiMoO/FeO) thin films were fabricated by a dip-coating technique using precursor solutions. The heterostructures were deposited on fluorine-doped tin oxide glass substrates. From a detailed characterization using X-ray diffraction and X-ray photoelectron spectroscopy, the formation of the orthorhombic phase for BiMoO and the co-existence of hematite and maghemite in FeO was demonstrated. Meanwhile, the field emission scanning electron microscopy cross-section images confirm the formation of well-defined BiMoO film under the FeO deposition. The optical band gap energies for the heterostructure obtained were estimated from the diffuse reflectance spectra and ranged from 2.3 to 3.5 eV. Photoluminescence analysis revealed an improved separation and faster transfer of photogenerated electrons and holes for the BiMoO/FeO (Het) film. The best oxytetracycline (OTC) removal percentage through photoelectrocatalytic treatment was 96.85% using the Het. Besides, were carried out the variation of parameters which affect the OTC photoelectrocatalytic degradation as pH, potential applied, and scavenger assay. The O was the oxidant predominate, which attack the OTC ring to initiate and accelerate the degradation process. Based on the analysis of degradation intermediates and characteristics of BiMoO/FeO, possible degradation pathways and mechanisms of OTC were displayed. An enhancement of oxytetracycline degradation efficiency of Het fabricated compared to pristine oxides was achieved mainly due to avoid the charge recombination of photogenerated electron-hole pairs provided by Direct Z-scheme heterostructure. Finally, the Het fabricated represents a promising material for efficient and sustainable pharmaceutical removal applications.
在这项研究中,通过使用前驱体溶液的浸渍涂层技术制备了基于铋钼矿/氧化铁(BiMoO/FeO)薄膜的异质结构。异质结构沉积在掺氟氧化锡玻璃基底上。通过 X 射线衍射和 X 射线光电子能谱的详细表征,证明了 BiMoO 形成正交相,FeO 中同时存在赤铁矿和磁铁矿。同时,场发射扫描电子显微镜横截面图像证实了在 FeO 沉积下形成了定义明确的 BiMoO 薄膜。从漫反射光谱估算得到的异质结构的光学带隙能量范围为 2.3 至 3.5 eV。光致发光分析表明,BiMoO/FeO(Het)薄膜的光生电子和空穴的分离和转移更快。通过光电催化处理,Het 对土霉素(OTC)的去除率最高可达 96.85%。此外,还进行了影响 OTC 光电催化降解的参数变化研究,如 pH 值、施加的电位和猝灭剂测定。O 是主要的氧化剂,攻击 OTC 环以引发和加速降解过程。基于 BiMoO/FeO 的降解中间体分析和特性,展示了 OTC 的可能降解途径和机制。与原始氧化物相比,Het 制备的土霉素降解效率得到了提高,这主要是由于避免了光生电子-空穴对的电荷复合,提供了直接 Z 型异质结构。最后,Het 的制备代表了一种用于高效和可持续药物去除应用的有前途的材料。