Department of Orthopedic Surgery, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, Chengdu, People's Republic of China.
Respiratory disease wards, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
BMJ Open. 2024 Oct 8;14(10):e082616. doi: 10.1136/bmjopen-2023-082616.
With the emergence of new COVID-19 variants (Omicron BA.5.2.48 and B.7.14), predicting the mortality of infected patients has become increasingly challenging due to the continuous mutation of the virus. Existing models have shown poor performance and limited clinical utility. This study aims to identify the independent risk factors and develop practical predictive models for mortality among patients infected with new COVID-19 variants.
A retrospective study.
We extracted data from 1029 COVID-19 patients in the respiratory disease wards of a general hospital in China between 22 December 2022 and 15 February 2023.
Mortality within 15 days after hospital discharge.
A total of 987 cases with new COVID-19 variants (Omicron BA.5.2.48 and B.7.14) were eventually included, among them, 153 (15.5%) died. Non-invasive ventilation, intubation, myoglobin, international normalised ratio, age, number of diagnoses, respiratory rate, pulse, neutrophil count and albumin were the most important predictors of mortality among new COVID-19 variants. The area under the curve of logistic regression (LR), decision tree (DT) and Extreme Gradient Boosting (XGBoost) models were 0.959, 0.883 and 0.993, respectively. The diagnostic accuracy was 0.926 for LR, 0.918 for DT and 0.977 for XGBoost. XGBoost model had the highest sensitivity (0.908) and specificity (0.989).
Our study developed and validated three practical models for predicting mortality in patients with new COVID-19 variants. All models performed well, and XGBoost was the best-performing model.
随着新型 COVID-19 变异株(Omicron BA.5.2.48 和 B.7.14)的出现,由于病毒的不断突变,预测感染患者的死亡率变得越来越具有挑战性。现有的模型表现不佳,临床实用性有限。本研究旨在确定独立的危险因素,并为感染新型 COVID-19 变异株的患者的死亡率开发实用的预测模型。
回顾性研究。
我们从 2022 年 12 月 22 日至 2023 年 2 月 15 日期间在中国一家综合医院呼吸科病房的 1029 例 COVID-19 患者中提取数据。
出院后 15 天内的死亡率。
共纳入 987 例新型 COVID-19 变异株(Omicron BA.5.2.48 和 B.7.14)患者,其中 153 例(15.5%)死亡。无创通气、插管、肌红蛋白、国际标准化比值、年龄、诊断次数、呼吸频率、脉搏、中性粒细胞计数和白蛋白是非新型 COVID-19 变异株患者死亡的最重要预测因素。逻辑回归(LR)、决策树(DT)和极端梯度提升(XGBoost)模型的曲线下面积分别为 0.959、0.883 和 0.993。LR 的诊断准确性为 0.926,DT 为 0.918,XGBoost 为 0.977。XGBoost 模型的敏感性(0.908)和特异性(0.989)最高。
我们开发并验证了三种预测新型 COVID-19 变异株患者死亡率的实用模型。所有模型的性能都很好,XGBoost 是表现最好的模型。