Silver Jack, den Engelsen Daniel, Al-Jaff Golzar, Taies Jehad A, Wilson Michael T, Fern George R
Department of Chemical Engineering, Wolfson Centre for Sustainable Materials Processing and Development, Brunel University of London, Kingston Lane, Uxbridge, Middlesex, UB8 3PH, UK.
School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK.
J Biol Inorg Chem. 2024 Dec;29(7-8):721-761. doi: 10.1007/s00775-024-02075-9. Epub 2024 Oct 10.
Mössbauer parameters of low-spin six-coordinate [Fe(II)(Por)L] complexes (where Por is a synthetic porphyrin; L is a nitrogenous aliphatic, an aromatic base or a heterocyclic ligand, a P-bonding ligand, CO or CN) and low-spin [Fe(Por)LX] complexes (where L and X are different ligands) are reported. A known point charge calculation approach was extended to investigate how the axial ligands and the four porphyrinato-N atoms generate the observed quadrupole splittings (ΔE) for the complexes. Partial quadrupole splitting (p.q.s.) and partial chemical shifts (p.c.s.) values were derived for all the axial ligands, and porphyrins reported in the literature. The values for each porphyrin are different emphasising the importance/uniqueness of the [Fe(PPIX)] moiety, (which is ubiquitous in nature). This new analysis enabled the construction of figures relating p.c.s and p.q.s values. The relationships presented in the figures indicates that strong field ligands such as CO can, and do change the sign of the electric field gradient in the [Fe(II)(Por)L] complexes. The limiting p.q.s. value a ligand can have and still form a six-coordinate low-spin [Fe(II)(Por)L] complex is established. It is shown that the control the porphyrin ligands exert on the low-spin Fe(II) atom limits its bonding to a defined range of axial ligands; outside this range the spin state of the iron is unstable and five-coordinate high-spin complexes are favoured. Amongst many conclusions, it was found that oxygen cannot form a stable low-spin [Fe(II)(Por)L(O)] complex and that oxy-haemoglobin is best described as an [Fe(III)(Por)L(O)] complex, the iron is ferric bound to the superoxide molecule.
报道了低自旋六配位[Fe(II)(Por)L]配合物(其中Por是合成卟啉;L是含氮脂肪族、芳香碱或杂环配体、π键合配体、CO或CN)和低自旋[Fe(Por)LX]配合物(其中L和X是不同配体)的穆斯堡尔参数。扩展了一种已知的点电荷计算方法,以研究轴向配体和四个卟啉氮原子如何产生配合物中观察到的四极分裂(ΔE)。推导了文献中报道的所有轴向配体和卟啉的部分四极分裂(p.q.s.)和部分化学位移(p.c.s.)值。每个卟啉的值不同,强调了[Fe(PPIX)]部分(在自然界中普遍存在)的重要性/独特性。这种新的分析使得能够构建与p.c.s.和p.q.s.值相关的图表。图表中呈现的关系表明,诸如CO等强场配体能够且确实会改变[Fe(II)(Por)L]配合物中电场梯度的符号。确定了一种配体能够具有且仍能形成六配位低自旋[Fe(II)(Por)L]配合物的极限p.q.s.值。结果表明,卟啉配体对低自旋Fe(II)原子的控制将其键合限制在一定范围的轴向配体;超出此范围,铁的自旋态不稳定,五配位高自旋配合物更受青睐。在众多结论中,发现氧不能形成稳定的低自旋[Fe(II)(Por)L(O)]配合物,氧合血红蛋白最好描述为[Fe(III)(Por)L(O)]配合物,铁为与超氧分子结合的三价铁。