McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA.
Nat Commun. 2024 Oct 9;15(1):8752. doi: 10.1038/s41467-024-52976-1.
As synthetic biology expands, creating "drag-and-drop" regulatory tools that can achieve diverse regulatory outcomes are paramount. Herein, we develop a approach for engineering complex post-transcriptional control by rewiring the Carbon Storage Regulatory (Csr) Network of Escherichia coli. We co-opt native interactions of the Csr Network to establish post-transcriptional logic gates and achieve complex bacterial regulation. First, we rationally engineer RNA-protein interactions to create a genetic toolbox of 12 BUFFER Gates that achieves a 15-fold range of expression. Subsequently, we develop a Csr-regulated NOT Gate by integrating a cognate 5' UTR that is natively Csr-activated into our platform. We then deploy the BUFFER and NOT gates to build a bi-directional regulator, two input Boolean Logic gates OR, NOR, AND and NAND and a pulse-generating circuit. Last, we port our Csr-regulated BUFFER Gate into three industrially relevant bacteria simply by leveraging the conserved Csr Network in each species.
随着合成生物学的发展,创建能够实现多样化调控效果的“拖放式”调控工具至关重要。在此,我们通过重新布线大肠杆菌的碳储存调控(Csr)网络,开发了一种用于工程复杂的转录后调控的方法。我们利用 Csr 网络的天然相互作用来建立转录后逻辑门,并实现复杂的细菌调控。首先,我们合理设计 RNA-蛋白相互作用,创建了一个由 12 个 BUFFER 门组成的遗传工具包,实现了 15 倍的表达范围。随后,我们通过将天然 Csr 激活的同源 5'UTR 整合到我们的平台中,开发了一个 Csr 调控的 NOT 门。然后,我们使用 BUFFER 和 NOT 门构建了一个双向调节剂、两个输入布尔逻辑门(OR、NOR、AND 和 NAND)和一个脉冲生成电路。最后,我们只需利用每个物种中保守的 Csr 网络,就将我们的 Csr 调控的 BUFFER 门移植到三种工业相关的细菌中。