Suppr超能文献

细胞外电子转移实现了对铜(I)催化的炔烃-叠氮环加成反应的细胞控制。

Extracellular Electron Transfer Enables Cellular Control of Cu(I)-Catalyzed Alkyne-Azide Cycloaddition.

作者信息

Partipilo Gina, Graham Austin J, Belardi Brian, Keitz Benjamin K

机构信息

McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States.

Center for Dynamics and Control of Materials, University of Texas at Austin, Austin, Texas 78712, United States.

出版信息

ACS Cent Sci. 2022 Feb 23;8(2):246-257. doi: 10.1021/acscentsci.1c01208. Epub 2022 Jan 14.

Abstract

Extracellular electron transfer (EET) is an anaerobic respiration process that couples carbon oxidation to the reduction of metal species. In the presence of a suitable metal catalyst, EET allows for cellular metabolism to control a variety of synthetic transformations. Here, we report the use of EET from the electroactive bacterium for metabolic and genetic control over Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC). CuAAC conversion under anaerobic and aerobic conditions was dependent on live, actively respiring cells. The reaction progress and kinetics were manipulated by tailoring the central carbon metabolism. Similarly, EET-CuAAC activity was dependent on specific EET pathways that could be regulated via inducible expression of EET-relevant proteins: MtrC, MtrA, and CymA. EET-driven CuAAC exhibited modularity and robustness in the ligand and substrate scope. Furthermore, the living nature of this system could be exploited to perform multiple reaction cycles without regeneration, something inaccessible to traditional chemical reductants. Finally, enabled bioorthogonal CuAAC membrane labeling on live mammalian cells without affecting cell viability, suggesting that can act as a dynamically tunable biocatalyst in complex environments. In summary, our results demonstrate how EET can expand the reaction scope available to living systems by enabling cellular control of CuAAC.

摘要

细胞外电子转移(EET)是一种厌氧呼吸过程,它将碳氧化与金属物种的还原耦合起来。在合适的金属催化剂存在下,EET使细胞代谢能够控制各种合成转化。在此,我们报告了利用电活性细菌的EET对铜(I)催化的炔烃-叠氮化物环加成反应(CuAAC)进行代谢和遗传控制。厌氧和好氧条件下的CuAAC转化取决于有活性、正在进行呼吸作用的细胞。通过调整中心碳代谢来操纵反应进程和动力学。同样,EET-CuAAC活性取决于特定的EET途径,这些途径可通过与EET相关的蛋白质(MtrC、MtrA和CymA)的诱导表达来调节。EET驱动的CuAAC在配体和底物范围上表现出模块化和稳健性。此外,该系统的活性性质可用于进行多个无再生的反应循环,这是传统化学还原剂无法实现的。最后,能够在活的哺乳动物细胞上进行生物正交CuAAC膜标记而不影响细胞活力,这表明在复杂环境中可作为一种动态可调的生物催化剂。总之,我们的结果证明了EET如何通过实现对CuAAC的细胞控制来扩展活系统可用的反应范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f70/8875427/5eef0c5e8f50/oc1c01208_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验