Suppr超能文献

用于太阳能热能存储系统的氧化锌-硝酸钠纳米复合材料

ZnO-NaNO nanocomposites for solar thermal energy storage systems.

作者信息

Hari Suthan V, Suganthi K S, Rajan K S

机构信息

ABCDE Innovation Centre, SASTRA Deemed University, Thanjavur, 613401, India.

Centre for Energy Storage and Conversion, SASTRA Deemed University, Thanjavur, 613401, India.

出版信息

Sci Rep. 2024 Oct 9;14(1):23619. doi: 10.1038/s41598-024-72690-8.

Abstract

High-temperature phase change materials (PCMs) with good energy storage density and thermal conductivity are needed to utilize solar thermal energy effectively to meet industrial thermal energy demands. Composite PCMs containing a material of higher thermal conductivity and an inorganic high-temperature PCM can be explored to meet these requirements. Accordingly, a high-temperature, composite inorganic PCM (ZnO-NaNO) with enhanced thermophysical properties was prepared, and its energy storage potential was investigated experimentally. A maximum thermal conductivity enhancement of 22.7% was achieved at 200 °C for 2 wt% ZnO-NaNO nanocomposite. The increase in thermal conductivity at higher temperatures may be attributed to the formation of ordered sodium nitrate layers on the nanoparticle surfaces. The increase in surface area and surface energy due to the addition of ZnO nanoparticles increased the specific heat of the nanocomposite in both the solid and liquid phases (43.5% in the liquid phase for 2 wt% ZnO-NaNO). Thus, the addition of ZnO nanoparticles to NaNO increased its energy storage capacity. The addition of ZnO nanoparticles to NaNO did not affect the onset, peak or endset temperature during melting and freezing. Moreover, 2 wt% ZnO-NaNO exhibited cyclic stability even after 500 cycles and thus has potential as an energy storage medium.

摘要

为了有效利用太阳能以满足工业热能需求,需要具有良好储能密度和热导率的高温相变材料(PCM)。可以探索包含具有较高热导率的材料和无机高温PCM的复合PCM来满足这些要求。因此,制备了一种具有增强热物理性质的高温复合无机PCM(ZnO-NaNO),并对其储能潜力进行了实验研究。对于2 wt%的ZnO-NaNO纳米复合材料,在200°C时实现了22.7%的最大热导率增强。较高温度下热导率的增加可能归因于纳米颗粒表面形成了有序的硝酸钠层。由于添加ZnO纳米颗粒导致的表面积和表面能增加,使纳米复合材料在固相和液相中的比热均有所增加(对于2 wt%的ZnO-NaNO,液相中增加了43.5%)。因此,向NaNO中添加ZnO纳米颗粒提高了其储能能力。向NaNO中添加ZnO纳米颗粒不影响熔化和冻结过程中的起始、峰值或结束温度。此外,即使经过500次循环,2 wt%的ZnO-NaNO仍表现出循环稳定性,因此具有作为储能介质的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验