Pan Jin-Tao, Zhu Bo-Han, Ma Ling-Ling, Chen Wei, Zhang Guang-Yang, Tang Jie, Liu Yuan, Wei Yang, Zhang Chao, Zhu Zhi-Han, Zhu Wen-Guo, Li Guixin, Lu Yan-Qing, Clark Noel A
National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China.
Department of Physics, Nantong University, Nantong, 226019, China.
Nat Commun. 2024 Oct 9;15(1):8732. doi: 10.1038/s41467-024-53040-8.
Simultaneous manipulation of multiple degrees of freedom of light lies at the heart of photonics. Nonlinear wavefront shaping offers an exceptional way to achieve this goal by converting incident light into beams of new frequencies with spatially varied phase, amplitude, and angular momenta. Nevertheless, the reconfigurable control over structured light fields for advanced multimode nonlinear photonics remains a grand challenge. Here, we propose the concept of nonlinear geometric phase in an emerging ferroelectric nematic fluid, of which the second-order nonlinear susceptibility carries spin-dependent nonlinearity phase. A case study with photopatterned q-plates demonstrates the generation of second-harmonic optical vortices with spin-locked topological charges by using cascaded linear and nonlinear optical spin-orbit interactions. Furthermore, we present the dynamic tunability of second-harmonic structured light through temperature, electric field, and twisted elastic force. The proposed strategy opens new avenues for reconfigurable nonlinear photonics, with potential applications in optical communications, quantum computing, high-resolution imaging, etc.
对光的多个自由度进行同时操控是光子学的核心所在。非线性波前整形提供了一种非凡的方式来实现这一目标,即通过将入射光转换为具有空间变化的相位、幅度和角动量的新频率光束。然而,对于先进的多模非线性光子学而言,对结构化光场进行可重构控制仍然是一个巨大的挑战。在此,我们提出了一种新兴铁电向列相流体中的非线性几何相位概念,其中二阶非线性极化率携带自旋相关的非线性相位。对光图案化q波片的一个案例研究表明,通过级联线性和非线性光学自旋轨道相互作用,可以产生具有自旋锁定拓扑电荷的二次谐波光学涡旋。此外,我们展示了通过温度、电场和扭曲弹力对二次谐波结构化光进行动态调谐。所提出的策略为可重构非线性光子学开辟了新途径,在光通信、量子计算、高分辨率成像等领域具有潜在应用。