Kludze Atsutse, Kono Junichiro, Mittleman Daniel M, Ghasempour Yasaman
Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA.
Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
Nat Commun. 2024 Oct 9;15(1):8756. doi: 10.1038/s41467-024-53035-5.
Backscattering is a promising power-efficient communication technique providing sustainable wireless links with a low carbon footprint. This approach is a critical enabler for dense IoT networks, which are forecast to grow to 41 billion by 2025. However, existing backscatter designs are limited to the sub-6 GHz bands or narrowband operation in the millimeter-wave regime; therefore, they fail to concurrently support many interference-free low-power users. Enabling a frequency-agile wideband backscatter design in the sub-terahertz offers a two-pronged advantage for densely deployed backscatter networks: spatial reuse enabled by directionality and frequency multiplexing enabled by the large available bandwidth. We present the first sub-THz backscatter architecture that operates above 100 GHz. Our design relies on a detailed understanding of reciprocity in leaky-wave devices and offers a realistic joint localization and communication protocol for sub-THz backscatter networks.
反向散射是一种很有前景的节能通信技术,可提供具有低碳足迹的可持续无线链路。这种方法是密集物联网网络的关键推动因素,预计到2025年,密集物联网网络将增长到410亿个。然而,现有的反向散射设计仅限于低于6 GHz频段或毫米波频段的窄带操作;因此,它们无法同时支持许多无干扰的低功耗用户。在太赫兹频段实现频率灵活的宽带反向散射设计,为密集部署的反向散射网络提供了两方面的优势:方向性实现的空间复用和大可用带宽实现的频率复用。我们展示了首个工作在100 GHz以上的太赫兹反向散射架构。我们的设计依赖于对漏波器件中互易性的详细理解,并为太赫兹反向散射网络提供了一种切实可行的联合定位和通信协议。