Suppr超能文献

一种基于轻量级小目标检测头的新型YOLOv5_ES用于印刷电路板表面缺陷检测。

A Novel YOLOv5_ES based on lightweight small object detection head for PCB surface defect detection.

作者信息

Gao Yi, Li Zhensong, Wang Yutong, Zhu Shiliang

机构信息

Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, 100192, China.

出版信息

Sci Rep. 2024 Oct 10;14(1):23650. doi: 10.1038/s41598-024-74368-7.

Abstract

In the manufacturing process of printed circuit boards (PCBs), surface defects have a significant negative impact on product quality. Considering that traditional object detection algorithms have low accuracy in handling PCB images with complex backgrounds, various types, and small-sized defects, this paper proposes a PCB defect detection algorithm based on a novel YOLOv5 multi-scale attention mechanism(EMA) spatial pyramid dilated Convolution (SPD-Conv) (YOLOv5_ES) network improved YOLOv5s framework. Firstly, the detection head is optimized by removing medium and large detection layers, fully leveraging the capability of the small detection head to identify minor target defects. This approach not only improves model accuracy but also achieves lightweighting. Secondly, in order to further reduce the number of parameters and computational costs, the SPD-Conv is introduced to improve the feature extraction capability by reducing information loss. Thirdly, a EMA module is introduced to fuse context information of different scales, enhancing the model's generalization ability. Compared to the YOLOv5s model, there is a 3.1% improvement in mean average precision (mAP0.5), a 55.8% reduction in model parameters, and a 4.8% reduction in giga floating-point operations per second (GFLOPs). These results demonstrate a significant improvement in both accuracy and model parameter efficiency.

摘要

在印刷电路板(PCB)的制造过程中,表面缺陷对产品质量有重大负面影响。鉴于传统目标检测算法在处理具有复杂背景、多种类型和小尺寸缺陷的PCB图像时精度较低,本文提出了一种基于新颖的YOLOv5多尺度注意力机制(EMA)空间金字塔扩张卷积(SPD-Conv)(YOLOv5_ES)网络改进的YOLOv5s框架的PCB缺陷检测算法。首先,通过去除中大型检测层来优化检测头,充分利用小检测头识别微小目标缺陷的能力。这种方法不仅提高了模型精度,还实现了轻量化。其次,为了进一步减少参数数量和计算成本,引入SPD-Conv以通过减少信息损失来提高特征提取能力。第三,引入EMA模块来融合不同尺度的上下文信息,增强模型的泛化能力。与YOLOv5s模型相比,平均精度均值(mAP0.5)提高了3.1%,模型参数减少了55.8%,每秒千兆浮点运算次数(GFLOPs)减少了4.8%。这些结果表明在精度和模型参数效率方面都有显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3158/11464808/38475e137046/41598_2024_74368_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验