Suppr超能文献

LSD-YOLOv5:一种基于轻量级网络和增强特征融合模式的钢带表面缺陷检测算法

LSD-YOLOv5: A Steel Strip Surface Defect Detection Algorithm Based on Lightweight Network and Enhanced Feature Fusion Mode.

作者信息

Zhao Huan, Wan Fang, Lei Guangbo, Xiong Ying, Xu Li, Xu Chengzhi, Zhou Wen

机构信息

School of Computer Science, Hubei University of Technology, Wuhan 430068, China.

出版信息

Sensors (Basel). 2023 Jul 20;23(14):6558. doi: 10.3390/s23146558.

Abstract

In the field of metallurgy, the timely and accurate detection of surface defects on metallic materials is a crucial quality control task. However, current defect detection approaches face challenges with large model parameters and low detection rates. To address these issues, this paper proposes a lightweight recognition model for surface damage on steel strips, named LSD-YOLOv5. First, we design a shallow feature enhancement module to replace the first Conv structure in the backbone network. Second, the Coordinate Attention mechanism is introduced into the MobileNetV2 bottleneck structure to maintain the lightweight nature of the model. Then, we propose a smaller bidirectional feature pyramid network (BiFPN-S) and combine it with Concat operation for efficient bidirectional cross-scale connectivity and weighted feature fusion. Finally, the Soft-DIoU-NMS algorithm is employed to enhance the recognition efficiency in scenarios where targets overlap. Compared with the original YOLOv5s, the LSD-YOLOv5 model achieves a reduction of 61.5% in model parameters and a 28.7% improvement in detection speed, while improving recognition accuracy by 2.4%. This demonstrates that the model achieves an optimal balance between detection accuracy and speed, while maintaining a lightweight structure.

摘要

在冶金领域,及时准确地检测金属材料表面缺陷是一项至关重要的质量控制任务。然而,当前的缺陷检测方法面临着模型参数大、检测率低的挑战。为了解决这些问题,本文提出了一种用于钢带表面损伤的轻量级识别模型,名为LSD - YOLOv5。首先,我们设计了一个浅层特征增强模块来替换主干网络中的第一个卷积结构。其次,将坐标注意力机制引入到MobileNetV2瓶颈结构中,以保持模型的轻量级特性。然后,我们提出了一个更小的双向特征金字塔网络(BiFPN-S),并将其与拼接操作相结合,以实现高效的双向跨尺度连接和加权特征融合。最后,采用Soft-DIoU-NMS算法来提高目标重叠场景下的识别效率。与原始的YOLOv5s相比,LSD - YOLOv5模型的模型参数减少了61.5%,检测速度提高了28.7%,同时识别准确率提高了2.4%。这表明该模型在检测精度和速度之间实现了最优平衡,同时保持了轻量级结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b45/10386349/b022f79aca54/sensors-23-06558-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验