Wdowiak Emilia, Rogalski Mikołaj, Arcab Piotr, Zdańkowski Piotr, Józwik Michał, Trusiak Maciej
Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., Warsaw, 02-525, Poland.
Sci Rep. 2024 Oct 9;14(1):23611. doi: 10.1038/s41598-024-74866-8.
Large field-of-view (FOV) microscopic imaging (over 100 mm) with high lateral resolution (1-2 μm) plays a pivotal role in biomedicine and biophotonics, especially within the label-free regime. Lensless digital holographic microscopy (LDHM) is promising in this context but ensuring accurate quantitative phase imaging (QPI) in large FOV LDHM is challenging. While phantoms, 3D printed by two-photon polymerization (TPP), have facilitated testing small FOV lens-based QPI systems, an equivalent evaluation for lensless techniques remains elusive, compounded by issues such as twin-image and beam distortions, particularly towards the detector's edges. Here, we propose an application of TPP over large area to examine phase consistency in LDHM. Our research involves fabricating widefield phase test targets with galvo and piezo scanning, scrutinizing them under single-shot twin-image corrupted conditions and multi-frame iterative twin-image minimization scenarios. By measuring the structures near the detector's edges, we verified LDHM phase imaging errors across the entire FOV, with less than 12% phase value difference between areas. Our findings indicate that TPP, followed by LDHM and Linnik interferometry cross-verification, requires new design considerations for precise large-area photonic manufacturing. This research paves the way for quantitative benchmarking of large FOV lensless phase imaging, enhancing understanding and further development of LDHM technique.
具有高横向分辨率(1 - 2微米)的大视野(FOV)显微成像(超过100毫米)在生物医学和生物光子学中起着关键作用,特别是在无标记领域。在这种情况下,无透镜数字全息显微镜(LDHM)很有前景,但要在大视野LDHM中确保准确的定量相位成像(QPI)具有挑战性。虽然通过双光子聚合(TPP)3D打印的体模有助于测试基于小视野透镜的QPI系统,但对于无透镜技术的等效评估仍然难以实现,再加上双像和光束畸变等问题,特别是在探测器边缘附近。在这里,我们提出在大面积上应用TPP来检查LDHM中的相位一致性。我们的研究包括使用振镜和压电扫描制造宽场相位测试目标,在单次双像损坏条件和多帧迭代双像最小化场景下对它们进行仔细检查。通过测量探测器边缘附近的结构,我们验证了整个FOV内的LDHM相位成像误差,不同区域之间的相位值差异小于12%。我们的研究结果表明,TPP之后进行LDHM和林尼克干涉测量交叉验证,需要新的设计考虑因素来实现精确的大面积光子制造。这项研究为大视野无透镜相位成像的定量基准测试铺平了道路,增强了对LDHM技术的理解和进一步发展。