Suppr超能文献

揭开新冠后综合征的面纱:泰国人群中的发病率、生物标志物和临床表型。

Unveiling Post-COVID-19 syndrome: incidence, biomarkers, and clinical phenotypes in a Thai population.

机构信息

Department of Social Medicine, Hatyai Hospital, Songkhla, Thailand.

Department of Infectious Disease, Section of Adult Infectious Disease, Imperial College London. Hammersmith Hospital Campus, London, W12 0NN, United Kingdom.

出版信息

BMC Infect Dis. 2024 Oct 10;24(1):1132. doi: 10.1186/s12879-024-10055-2.

Abstract

BACKGROUND

Post-COVID- 19 syndrome (PCS) significantly impacts the quality of life of survivors. There is, however, a lack of a standardized approach to PCS diagnosis and management. Our bidirectional cohort study aimed to estimate PCS incidence, identify risk factors and biomarkers, and classify clinical phenotypes for enhanced management to improve patient outcomes.

METHODS

A bidirectional prospective cohort study was conducted at five medical sites in Hatyai district in Songkhla Province, Thailand. Participants were randomly selected from among the survivors of COVID-19 aged≥18 years between May 15, 2022, and January 31, 2023. The selected participants underwent a scheduled outpatient visit for symptom and health assessments 12 to 16 weeks after the acute onset of infection, during which PCS was diagnosed and blood samples were collected for hematological, inflammatory, and serological tests. PCS was defined according to the World Health Organization criteria. Univariate and multiple logistic regression analyses were used to identify biomarkers associated with PCS. Moreover, three clustering methods (agglomerative hierarchical, divisive hierarchical, and K-means clustering) were applied, and internal validation metrics were used to determine clustering and similarities in phenotypes.

FINDINGS

A total of 300 survivors were enrolled in the study, 47% of whom developed PCS according to the World Health Organization (WHO) definition. In the sampled cohort, 66.3% were females, and 79.4% of them developed PCS (as compared to 54.7% of males, p-value <0.001). Comorbidities were present in 19% (57/300) of all patients, with 11% (18/159) in the group without PCS and 27.7% (39/141) in the group with PCS. The incidence of PCS varied depending on the criteria used and reached 13% when a quality of life indicator was added to the WHO definition. Common PCS symptoms were hair loss (22%) and fatigue (21%), while mental health symptoms were less frequent (insomnia 3%, depression 3%, anxiety 2%). According to our univariate analysis, we found significantly lower hematocrit and IgG levels and greater ALP levels in PCS patients than in patients who did not develop PCS (p-value < 0.05). According to our multivariable analysis, adjusted ALP levels remained a significant predictor of PCS (OR 1.02, p-value= 0.005). Clustering analysis revealed four groups characterized by severe clinical symptoms and mental health concerns (Cluster 1, 4%), moderate physical symptoms with predominant mental health issues (Cluster 2, 9%), moderate mental health issues with predominant physical symptoms (Cluster 3, 14%), and mild to no PCS (Cluster 4, 77%). The quality of life and ALP levels varied across the clusters.

INTERPRETATION

This study challenges the prevailing diagnostic criteria for PCS, emphasizing the need for a holistic approach that considers quality of life. The identification of ALP as a biomarker associated with PCS suggests that its monitoring could be used for early detection of the onset of PCS. Cluster analysis revealed four distinct clinical phenotypes characterized by different clinical symptoms and mental health concerns that 'exhibited varying impacts on quality of life. This finding suggested that accounting for the reduced quality of life in the definition of PCS could enhance its diagnosis and management and that moving toward personalized interventions could both improve patient outcomes and help reduce medicalization and optimally target the available resources.

FUNDING

The research publication received funding support from Medical Council of Thailand (Police General Dr. Jongjate Aojanepong Foundation), Hatyai Hospital Charity and Wellcome Trust.

摘要

背景

新冠后综合征(PCS)显著影响幸存者的生活质量。然而,目前缺乏标准化的 PCS 诊断和管理方法。我们的双向队列研究旨在估计 PCS 的发病率,确定风险因素和生物标志物,并对临床表型进行分类,以改善管理,提高患者的治疗效果。

方法

在泰国宋卡府合艾区的五个医疗点进行了一项双向前瞻性队列研究。从 2022 年 5 月 15 日至 2023 年 1 月 31 日期间,选择 COVID-19 幸存者中年龄≥18 岁的患者进行随机抽样。选择的参与者在急性感染后 12 至 16 周进行计划的门诊就诊,进行症状和健康评估,在此期间诊断 PCS 并采集血液样本进行血液学、炎症和血清学检查。PCS 根据世界卫生组织(WHO)的标准进行定义。使用单变量和多变量逻辑回归分析来确定与 PCS 相关的生物标志物。此外,应用了三种聚类方法(凝聚层次聚类、分裂层次聚类和 K-均值聚类),并使用内部验证指标来确定聚类和表型的相似性。

结果

共有 300 名幸存者参加了这项研究,其中 47% 根据 WHO 定义患有 PCS。在抽样队列中,66.3%为女性,其中 79.4%(159 人中有 118 人)患有 PCS(而男性中为 54.7%,p 值<0.001)。所有患者中有 19%(57/300)合并有合并症,无 PCS 组中有 11%(18/159),有 PCS 组中有 27.7%(39/141)。PCS 的发病率因使用的标准而异,当将生活质量指标添加到 WHO 定义中时,发病率为 13%。常见的 PCS 症状包括脱发(22%)和疲劳(21%),而心理健康症状则较少见(失眠 3%,抑郁 3%,焦虑 2%)。根据我们的单变量分析,我们发现 PCS 患者的红细胞压积和 IgG 水平显著低于未发生 PCS 的患者(p 值<0.05)。根据我们的多变量分析,调整后的 ALP 水平仍然是 PCS 的显著预测因素(OR 1.02,p 值=0.005)。聚类分析显示,四个组的特征为严重的临床症状和心理健康问题(聚类 1,4%)、以主要心理健康问题为主的中度躯体症状(聚类 2,9%)、以主要躯体症状为主的中度心理健康问题(聚类 3,14%)和轻度至无 PCS(聚类 4,77%)。聚类之间的生活质量和 ALP 水平存在差异。

结论

本研究对现有的 PCS 诊断标准提出了挑战,强调需要采用一种整体方法来考虑生活质量。ALP 作为与 PCS 相关的生物标志物的鉴定表明,其监测可用于早期发现 PCS 的发病。聚类分析显示了四个不同的临床表型,其特征为不同的临床症状和心理健康问题,表现出对生活质量的不同影响。这一发现表明,在 PCS 的定义中考虑到生活质量的降低可能会改善其诊断和管理,并且朝着个性化干预的方向发展可能会改善患者的预后,同时有助于减少医疗化并优化利用现有资源。

资金

这项研究的研究出版物得到了泰国医学委员会(警察总监 Jongjate Aojanepong 基金会)、Hatyai 医院慈善基金会和惠康信托基金的资助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea6a/11465487/f14578d37672/12879_2024_10055_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验