CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
Microbiome. 2024 Oct 9;12(1):197. doi: 10.1186/s40168-024-01912-y.
Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota mediate the rate-limiting step of nitrification and remove the ammonia that inhibits the aerobic metabolism of methanotrophs. However, the AOA that inhabit deep-sea methane-seep surface sediments (DMS) are rarely studied. Here, we used global DMS metagenomics and metagenome-assembled genomes (MAGs) to investigate the metabolic activity, evolutionary history, and ecological contributions of AOA. Expression of AOA-specific ammonia-oxidizing gene (amoA) was examined in the sediments collected from the South China Sea (SCS) to identify their active ammonia metabolism in the DMS.
Our analysis indicated that AOA contribute > 75% to the composition of ammonia-utilization genes within the surface layers (above 30 cm) of global DMS. The AOA-specific ammonia-oxidizing gene was actively expressed in the DMS collected from the SCS. Phylogenomic analysis of medium-/high-quality MAGs from 18 DMS-AOA indicated that they evolved from ancestors in the barren deep-sea sediment and then expanded from the DMS to shallow water forming an amoA-NP-gamma clade-affiliated lineage. Molecular dating suggests that the DMS-AOA origination coincided with the Neoproterozoic oxidation event (NOE), which occurred ~ 800 million years ago (mya), and their expansion to shallow water coincided with the Sturtian glaciation (~ 713 mya). Comparative genomic analysis suggests that DMS-AOA exhibit higher requirement of carbon source for protein synthesis with enhanced genomic capability for osmotic regulation, motility, chemotaxis, and utilization of exogenous organic compounds, suggesting it could be more heterotrophic compared with other lineages.
Our findings provide new insights into the evolutionary history of AOA within the Thaumarchaeota, highlighting their critical roles in nitrogen cycling in the global DMS ecosystems. Video Abstract.
氨氧化古菌(AOA)隶属于泉古菌门,介导硝化作用的限速步骤,去除氨,氨会抑制甲烷营养菌的好氧代谢。然而,栖息在深海甲烷渗漏表面沉积物(DMS)中的 AOA 很少被研究。在这里,我们使用全球 DMS 宏基因组学和宏基因组组装基因组(MAG)来研究 AOA 的代谢活性、进化历史和生态贡献。我们通过检查南海沉积物中 AOA 特异性氨氧化基因(amoA)的表达,来确定它们在 DMS 中的活性氨代谢。
我们的分析表明,AOA 对全球 DMS 表层(30cm 以上)氨利用基因的组成贡献超过 75%。从南海采集的 DMS 中,AOA 特异性的氨氧化基因被积极表达。对来自 18 个 DMS-AOA 的中/高质量 MAG 的系统发育基因组分析表明,它们是从深海沉积物的贫瘠祖先进化而来的,然后从 DMS 扩展到浅水区,形成一个 amoA-NP-gamma 分支相关谱系。分子年代学表明,DMS-AOA 的起源与新元古代氧化事件(NOE)相吻合,发生在大约 8 亿年前(mya),它们向浅水区的扩展与斯图尔特冰期(~713 mya)相吻合。比较基因组分析表明,与其他谱系相比,DMS-AOA 对碳源的蛋白质合成需求更高,具有增强的渗透调节、运动性、趋化性和利用外源性有机化合物的基因组能力,这表明它们可能更异养。
我们的研究结果为泉古菌门中 AOA 的进化历史提供了新的见解,强调了它们在全球 DMS 生态系统氮循环中的关键作用。