Suppr超能文献

贯叶连翘治疗重度抑郁症血液中分子靶点的鉴定:一项机器学习药理学研究。

Identification of molecular targets of Hypericum perforatum in blood for major depressive disorder: a machine-learning pharmacological study.

作者信息

Xu Zewen, Rasteh Ayana Meegol, Dong Angela, Wang Panpan, Liu Hengrui

机构信息

School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.

Archbishop Mitty High School, San Jose, CA, USA.

出版信息

Chin Med. 2024 Oct 9;19(1):141. doi: 10.1186/s13020-024-01018-5.

Abstract

BACKGROUND

Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide. Hypericum perforatum (HP) is a traditional herb that has been shown to have antidepressant effects, but its mechanism is unclear. This study aims to identify the molecular targets of HP for the treatment of MDD.

METHODS

We performed differential analysis and weighted gene co-expression network analysis (WGCNA) with blood mRNA expression cohort of MDD and healthy control to identify DEGs and significant module genes (gene list 1). Three databases, CTD, DisGeNET, and GeneCards, were used to retrieve MDD-related gene intersections to obtain MDD-predicted targets (gene list 2). The validated targets were retrieved from the TCMSP database (gene list 3). Based on these three gene lists, 13 key pathways were identified. The PPI network was constructed by extracting the intersection of genes and HP-validated targets on all key pathways. Key therapeutic targets were obtained using MCODE and machine learning (LASSO, SVM-RFE). Clinical diagnostic assessments (Nomogram, Correlation, Intergroup expression), and gene set enrichment analysis (GSEA) were performed for the key targets. In addition, immune cell analysis was performed on the blood mRNA expression cohort of MDD to explore the association between the key targets and immune cells. Finally, molecular docking prediction was performed for the targets of HP active ingredients on MDD.

RESULTS

Differential expression analysis and WGCNA module analysis yielded 933 potential targets for MDD. Three disease databases were intersected with 982 MDD-predicted targets. The TCMSP retrieved 275 valid targets for HP. Separate enrichment analysis intersected 13 key pathways. Five key targets (AKT1, MAPK1, MYC, EGF, HSP90AA1) were finally screened based on all enriched genes and HP valid targets. Combined with the signaling pathway and immune cell analysis suggested the effect of peripheral immunity on MDD and the important role of neutrophils in immune inflammation. Finally, the binding of HP active ingredients (quercetin, kaempferol, and luteolin) and all 5 key targets were predicted based on molecular docking.

CONCLUSIONS

The active constituents of Hypericum perforatum can act on MDD and key targets and pathways of this action were identified.

摘要

背景

重度抑郁症(MDD)是全球最常见的精神疾病之一。贯叶连翘(HP)是一种传统草药,已被证明具有抗抑郁作用,但其作用机制尚不清楚。本研究旨在确定贯叶连翘治疗重度抑郁症的分子靶点。

方法

我们对重度抑郁症患者和健康对照者的血液mRNA表达队列进行差异分析和加权基因共表达网络分析(WGCNA),以确定差异表达基因(DEGs)和显著模块基因(基因列表1)。使用CTD、DisGeNET和GeneCards这三个数据库检索与重度抑郁症相关的基因交集,以获得重度抑郁症预测靶点(基因列表2)。从中药系统药理学数据库(TCMSP)中检索经过验证的靶点(基因列表3)。基于这三个基因列表,确定了13条关键通路。通过提取所有关键通路上的基因与贯叶连翘验证靶点的交集构建蛋白质-蛋白质相互作用(PPI)网络。使用分子复合物检测(MCODE)和机器学习(套索回归、支持向量机递归特征消除法)获得关键治疗靶点。对关键靶点进行临床诊断评估(列线图、相关性、组间表达)和基因集富集分析(GSEA)。此外,对重度抑郁症患者的血液mRNA表达队列进行免疫细胞分析,以探讨关键靶点与免疫细胞之间的关联。最后,对贯叶连翘活性成分作用于重度抑郁症的靶点进行分子对接预测。

结果

差异表达分析和WGCNA模块分析产生了933个重度抑郁症潜在靶点。三个疾病数据库与982个重度抑郁症预测靶点相交。TCMSP检索到275个贯叶连翘有效靶点。单独的富集分析确定了13条关键通路。基于所有富集基因和贯叶连翘有效靶点,最终筛选出5个关键靶点(AKT1、MAPK1、MYC、EGF、HSP90AA1)。结合信号通路和免疫细胞分析表明外周免疫对重度抑郁症的影响以及中性粒细胞在免疫炎症中的重要作用。最后,基于分子对接预测了贯叶连翘活性成分(槲皮素、山奈酚和木犀草素)与所有5个关键靶点的结合。

结论

贯叶连翘的活性成分可作用于重度抑郁症,且确定了该作用的关键靶点和通路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5d5/11465934/17c5000596f7/13020_2024_1018_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验