Suppr超能文献

使用盲源分离进行自动心脏运动提取的自门控自由运行5D全心MRI。

Self-gated free-running 5D whole-heart MRI using blind source separation for automated cardiac motion extraction.

作者信息

Montón Quesada Isabel, Ogier Augustin C, Ishida Masaki, Takafuji Masafumi, Ito Haruno, Sakuma Hajime, Romanin Ludovica, Roy Christopher W, Prša Milan, Richiardi Jonas, Yerly Jérôme, Stuber Matthias, van Heeswijk Ruud B

机构信息

Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.

Department of Radiology, Mie University Hospital, Tsu, Japan.

出版信息

Magn Reson Med. 2025 Mar;93(3):961-974. doi: 10.1002/mrm.30322. Epub 2024 Oct 9.

Abstract

PURPOSE

To compare two blind source separation (BSS) techniques to principal component analysis and the electrocardiogram for the identification of cardiac triggers in self-gated free-running 5D whole-heart MRI. To ascertain the precision and robustness of the techniques, they were compared in three different noise and contrast regimes.

METHODS

The repeated superior-inferior (SI) projections of a 3D radial trajectory were used to extract the physiological signals in three cardiac MRI cohorts: (1) 9 healthy volunteers without contrast agent injection at 1.5T, (2) 30 ferumoxytol-injected congenital heart disease patients at 1.5T, and (3) 12 gadobutrol-injected patients with suspected coronary artery disease at 3T. Self-gated cardiac triggers were extracted with the three algorithms (principal component analysis [PCA], second-order blind identification [SOBI], and independent component analysis [ICA]) and the difference with the electrocardiogram triggers was calculated. PCA and SOBI triggers were retained for image reconstruction. The image sharpness was ascertained on whole-heart 5D images obtained with PCA and SOBI and compared among the three cohorts.

RESULTS

SOBI resulted in smaller trigger differences in Cohorts 1 and 3 compared to PCA (p < 0.01) and in all cohorts compared to ICA (p < 0.04). In Cohorts 1 and 3, the sharpness increased significantly in the reconstructed images when using SOBI instead of PCA (p < 0.03), but not in Cohort 2 (p = 0.4).

CONCLUSION

We have shown that SOBI results in more precisely extracted self-gated triggers than PCA and ICA. The validation across three diverse cohorts demonstrates the robustness of the method against acquisition variability.

摘要

目的

比较两种盲源分离(BSS)技术与主成分分析以及心电图,用于在自门控自由运行5D全心MRI中识别心脏触发信号。为确定这些技术的精度和稳健性,在三种不同的噪声和对比度条件下对它们进行了比较。

方法

使用三维径向轨迹的重复上下(SI)投影,在三个心脏MRI队列中提取生理信号:(1)9名在1.5T场强下未注射造影剂的健康志愿者,(2)30名在1.5T场强下注射了铁氧还蛋白的先天性心脏病患者,以及(3)12名在3T场强下注射了钆布醇的疑似冠状动脉疾病患者。使用三种算法(主成分分析[PCA]、二阶盲辨识[SOBI]和独立成分分析[ICA])提取自门控心脏触发信号,并计算其与心电图触发信号的差异。保留PCA和SOBI触发信号用于图像重建。在使用PCA和SOBI获得的全心5D图像上确定图像清晰度,并在三个队列之间进行比较。

结果

与PCA相比,SOBI在队列1和队列3中导致的触发信号差异更小(p < 0.01),与ICA相比,在所有队列中差异更小(p < 0.04)。在队列1和队列3中,使用SOBI而非PCA时,重建图像的清晰度显著提高(p < 0.03),但在队列2中未提高(p = 0.4)。

结论

我们已经表明,与PCA和ICA相比,SOBI能更精确地提取自门控触发信号。在三个不同队列中的验证证明了该方法对采集变异性的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3627/11680725/0f4ada2cc0f0/MRM-93-961-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验