Suppr超能文献

PI-RADS v2.1 联合 ADC 值对前列腺癌 Gleason 评分风险分层的诊断价值分析:一项回顾性研究。

Diagnostic Value Analysis of PI-RADS v2.1 Combined with ADC Values in the Risk Stratification of Prostate Cancer Gleason Scores: A Retrospective Study.

机构信息

Medical Imaging Department, Fuzhou Medical College of Nanchang University, 344000 Fuzhou, Jiangxi, China.

Medical Imaging Department, First People's Hospital of Fuzhou, 344100 Fuzhou, Jiangxi, China.

出版信息

Arch Esp Urol. 2024 Sep;77(8):889-896. doi: 10.56434/j.arch.esp.urol.20247708.125.

Abstract

BACKGROUND

Prostate cancer is a remarkable global health concern, necessitating accurate risk stratification for optimal treatment and outcome prediction. By highlighting the potential of imaging-based approaches to improve risk assessment in prostate cancer, this research aims to evaluate the diagnostic efficacy of the Prostate Imaging Reporting and Data System (PI-RADS) v2.1 combined with apparent diffusion coefficient (ADC) values to gain increased context within the broad landscape of clinical needs and advancements in prostate cancer management.

METHODS

The clinical data of 145 patients diagnosed with prostate cancer were retrospectively analysed. The patients were divided into low-moderate- and high-risk groups on the basis of Gleason scores. PI-RADS v2.1 scores were assessed by senior radiologists and ADC values were calculated by using diffusion-weighted imaging. Statistical, univariate logistic regression, and receiver operating characteristic curve analyses were employed to evaluate the diagnostic efficacy of each index and combined PI-RADS v2.1 scores and ADC values.

RESULTS

This study found significant differences in PI-RADS v2.1 scores and ADC values between the low-moderate- and high-risk groups ( < 0.001). Logistic regression analysis revealed associations of various clinical indicators, PI-RADS score and ADC values with Gleason risk classification. Amongst indices, mean ADC demonstrated the highest sensitivity (0.912) and area under curve (AUC) value (0.962) and the combination of PI-RADS v2.1 with mean ADC showed high predictive value for the Gleason risk grading of prostate cancer with a high AUC value (0.966).

CONCLUSIONS

This study provides valuable evidence for the potential utility of imaging-based approaches, specifically PI-RADS v2.1 combined with ADC values, in enhancing the accuracy of risk stratification in prostate cancer.

摘要

背景

前列腺癌是一个全球性的健康问题,需要准确的风险分层来进行最佳治疗和预测结果。本研究旨在通过强调基于影像学的方法在改善前列腺癌风险评估方面的潜力,评估前列腺影像报告和数据系统(PI-RADS)v2.1 联合表观扩散系数(ADC)值在广泛的临床需求和前列腺癌管理进展背景下提高风险评估准确性的诊断效能。

方法

回顾性分析了 145 例经病理诊断为前列腺癌的患者的临床资料。根据 Gleason 评分将患者分为低危-中危组和高危组。由资深放射科医生评估 PI-RADS v2.1 评分,通过扩散加权成像计算 ADC 值。采用统计学、单因素逻辑回归和受试者工作特征曲线分析评估各指标及联合 PI-RADS v2.1 评分和 ADC 值的诊断效能。

结果

本研究发现低危-中危组和高危组之间 PI-RADS v2.1 评分和 ADC 值存在显著差异(<0.001)。逻辑回归分析显示,各临床指标、PI-RADS 评分和 ADC 值与 Gleason 风险分级相关。在各指标中,平均 ADC 值的敏感性最高(0.912),曲线下面积(AUC)值最大(0.962),PI-RADS v2.1 联合平均 ADC 值对前列腺癌 Gleason 风险分级具有较高的预测价值,AUC 值为 0.966。

结论

本研究为基于影像学的方法(特别是 PI-RADS v2.1 联合 ADC 值)在提高前列腺癌风险分层准确性方面的潜在应用提供了有价值的证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验