Suppr超能文献

动态对比增强磁共振成像和扩散加权磁共振成像对前列腺影像报告和数据系统(PI-RADS)检测临床显著性前列腺癌的贡献

Contribution of Dynamic Contrast-enhanced and Diffusion MRI to PI-RADS for Detecting Clinically Significant Prostate Cancer.

作者信息

Tavakoli Anoshirwan Andrej, Hielscher Thomas, Badura Patrick, Görtz Magdalena, Kuder Tristan Anselm, Gnirs Regula, Schwab Constantin, Hohenfellner Markus, Schlemmer Heinz-Peter, Bonekamp David

机构信息

From the Department of Radiology (E010) (A.A.T., P.B., R.G., H.P.S., D.B.), Division of Biostatistics (T.H.), and Department of Medical Physics (T.A.K.), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; and Department of Urology (M.G., M.H.) and Institute of Pathology (C.S.), University of Heidelberg Medical Center, Heidelberg, Germany.

出版信息

Radiology. 2023 Jan;306(1):186-199. doi: 10.1148/radiol.212692. Epub 2022 Aug 16.

Abstract

Background Prostate Imaging Reporting and Data System (PI-RADS) version 2.0 requires multiparametric MRI of the prostate, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) imaging sequences; however, the contribution of DCE imaging remains unclear. Purpose To assess whether DCE imaging in addition to apparent diffusion coefficient (ADC) and normalized T2 values improves PI-RADS version 2.0 for prediction of clinically significant prostate cancer (csPCa). Materials and Methods In this retrospective study, clinically reported PI-RADS lesions in consecutive men who underwent 3-T multiparametric MRI (T2-weighted, DWI, and DCE MRI) from May 2015 to September 2016 were analyzed quantitatively and compared with systematic and targeted MRI-transrectal US fusion biopsy. The normalized T2 signal (nT2), ADC measurement, mean early-phase DCE signal (mDCE), and heuristic DCE parameters were calculated. Logistic regression analysis indicated the most predictive DCE parameters for csPCa (Gleason grade group ≥2). Receiver operating characteristic parameter models were compared using the Obuchowski test. Recursive partitioning analysis determined ADC and mDCE value ranges for combined use with PI-RADS. Results Overall, 260 men (median age, 64 years [IQR, 58-69 years]) with 432 lesions (csPCa [ = 152] and no csPCa [ = 280]) were included. The mDCE parameter was predictive of csPCa when accounting for the ADC and nT2 parameter in the peripheral zone (odds ratio [OR], 1.76; 95% CI: 1.30, 2.44; = .001) but not the transition zone (OR, 1.17; 95% CI: 0.81, 1.69; = .41). Recursive partitioning analysis selected an ADC cutoff of 0.897 × 10 mm/sec ( = .04) as a classifier for peripheral zone lesions with a PI-RADS score assessed on the ADC map (hereafter, ADC PI-RADS) of 3. The mDCE parameter did not differentiate ADC PI-RADS 3 lesions ( = .11), but classified lesions with ADC PI-RADS scores greater than 3 with low ADC values (less than 0.903 × 10 mm/sec, < .001) into groups with csPCa rates of 70% and 97% ( = .008). A lesion size cutoff of 1.5 cm and qualitative DCE parameters were not defined as classifiers according to recursive partitioning ( > .05). Conclusion Quantitative or qualitative dynamic contrast-enhanced MRI was not relevant for Prostate Imaging Reporting and Data System (PI-RADS) 3 lesion risk stratification, while quantitative apparent diffusion coefficient (ADC) values were helpful in upgrading PI-RADS 3 and PI-RADS 4 lesions. Quantitative ADC measurement may be more important for risk stratification than current methods in future versions of PI-RADS. © RSNA, 2022 See also the editorial by Goh in this issue.

摘要

背景 前列腺影像报告和数据系统(PI-RADS)第2.0版要求对前列腺进行多参数磁共振成像,包括扩散加权成像(DWI)和动态对比增强(DCE)成像序列;然而,DCE成像的作用仍不明确。目的 评估除表观扩散系数(ADC)和标准化T2值外,DCE成像是否能改进PI-RADS第2.0版对临床显著前列腺癌(csPCa)的预测。材料与方法 在这项回顾性研究中,对2015年5月至2016年9月期间接受3-T多参数磁共振成像(T2加权、DWI和DCE磁共振成像)的连续男性患者中临床报告的PI-RADS病变进行定量分析,并与系统性和靶向性磁共振成像-经直肠超声融合活检结果进行比较。计算标准化T2信号(nT2)、ADC测量值、早期平均DCE信号(mDCE)和启发式DCE参数。逻辑回归分析确定了csPCa(Gleason分级组≥2)最具预测性的DCE参数。使用Obuchowski检验比较接受者操作特征参数模型。递归划分分析确定了与PI-RADS联合使用的ADC和mDCE值范围。结果 总体纳入260名男性(中位年龄64岁[四分位间距,58 - 69岁]),共432个病变(csPCa[ = 152]和无csPCa[ = 280])。在考虑外周区的ADC和nT2参数时,mDCE参数可预测csPCa(比值比[OR],1.76;95%可信区间:1.30, 2.44; = .001),但在移行区则不然(OR,1.17;95%可信区间:0.81, 1.69; = .41)。递归划分分析选择ADC截止值为0.897×10⁻³mm²/sec( = .04)作为外周区病变的分类器,该病变在基于ADC图评估的PI-RADS评分(以下简称ADC PI-RADS)为3。mDCE参数不能区分ADC PI-RADS 3级病变( = .11),但可将ADC PI-RADS评分大于3且ADC值低(小于0.90×10⁻³mm²/sec, < .001)的病变分为csPCa发生率分别为70%和97%的组( = .008)。根据递归划分,病变大小截止值1.5 cm和定性DCE参数未被定义为分类器( > .05)。结论 定量或定性动态对比增强磁共振成像与前列腺影像报告和数据系统(PI-RADS)3级病变风险分层无关,而定量表观扩散系数(ADC)值有助于提升PI-RADS 3级和PI-RADS 4级病变。在PI-RADS的未来版本中,定量ADC测量对于风险分层可能比当前方法更重要。©RSNA,2022 另见本期Goh的社论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验