Suppr超能文献

双相弛豫铁电陶瓷中的超高能量存储

Ultrahigh Energy-Storage in Dual-Phase Relaxor Ferroelectric Ceramics.

作者信息

Xiong Xin, Liu Hui, Zhang Ji, da Silva Lucas Lemos, Sheng Zhonghui, Yao Yonghao, Wang Ge, Hinterstein Manuel, Zhang Shujun, Chen Jun

机构信息

Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Nanjing University of Science and Technology, Nanjing, 210094, China.

出版信息

Adv Mater. 2024 Nov;36(48):e2410088. doi: 10.1002/adma.202410088. Epub 2024 Oct 10.

Abstract

High-performance dielectric energy-storage ceramics are beneficial for electrostatic capacitors used in various electronic systems. However, the trade-off between reversible polarizability and breakdown strength poses a significant challenge in simultaneously achieving high energy density and efficiency. Here a strategy is presented to address this issue by constructing a dual-phase structure through in situ phase separation. (BiNa)TiO-BaTiO-based relaxor ferroelectric ceramics are developed, creating a grain-separated dual perovskite phase structure using a facile solid-state reaction method. These ceramics feature two interactive relaxor phases with diversified nanoscale polar structures and heterogeneous grain boundaries, synergistically contributing to high polarization with low hysteresis, substantially increased resistivity, and suppressed electrostrain. Remarkably, a record-high energy density of 23.6 J cm with a high efficiency of 92% under 99 kV mm is achieved in the bulk ceramic capacitor. This strategy holds promise for enhancing overall energy-storage performance and related functionalities in ferroelectrics.

摘要

高性能介电储能陶瓷对各种电子系统中使用的静电电容器有益。然而,可逆极化率和击穿强度之间的权衡在同时实现高能量密度和效率方面构成了重大挑战。本文提出了一种策略,通过原位相分离构建双相结构来解决这一问题。开发了基于(BiNa)TiO-BaTiO的弛豫铁电陶瓷,采用简便的固态反应方法创建了晶粒分离的双钙钛矿相结构。这些陶瓷具有两个具有多样化纳米级极性结构和异质晶界的相互作用弛豫相,协同作用导致低滞后的高极化、大幅提高的电阻率和抑制的电致应变。值得注意的是,在块状陶瓷电容器中,在99 kV/mm下实现了创纪录的23.6 J/cm³的高能量密度和92%的高效率。该策略有望提高铁电体的整体储能性能和相关功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验