Sohn Yeeun, Oh Jihoon, Lee Jieun, Kim Hyunjae, Hwang Insu, Noh Gyeongho, Lee Taeyong, Kim Ji Young, Bae Ki Yoon, Lee Taegeun, Lee Nohjoon, Chung Woo Jun, Choi Jang Wook
School of Chemical and Biological Engineering and Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
Hyundai Motor Group-Seoul National University (HMG-SNU) Joint Battery Research Center (JBRC), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
Adv Mater. 2024 Nov;36(47):e2407443. doi: 10.1002/adma.202407443. Epub 2024 Oct 10.
Interest in all-solid-state batteries (ASSBs), particularly the anode-less type, has grown alongside the expansion of the electric vehicle (EV) market, because they offer advantages in terms of their energy density and manufacturing cost. However, in most anode-less ASSBs, the anode is covered by a protective layer to ensure stable lithium (Li) deposition, thus requiring high temperatures to ensure adequate Li ion diffusion kinetics through the protective layer. This study proposes a dual-seed protective layer consisting of silver (Ag) and zinc oxide (ZnO) nanoparticles for sulfide-based anode-less ASSBs. This dual-seed-based protective layer not only facilitates Li diffusion via multiple lithiation pathways over a wide range of potentials, but also enhances the mechanical stability of the anode interface through the in situ formation of a Ag-Zn alloy with high ductility. The capacity retention during full-cell evaluation is 80.8% for 100 cycles when cycled at 1 mA cm with 3 mAh cm at room temperature. The dual-seed approach provides useful insights into the design of multi-seed concepts in which, from a mechanochemical perspective, various lithiophilic materials synergistically impact upon the anode-less interface.
随着电动汽车(EV)市场的扩大,人们对全固态电池(ASSB),尤其是无阳极型全固态电池的兴趣与日俱增,因为它们在能量密度和制造成本方面具有优势。然而,在大多数无阳极全固态电池中,阳极被一层保护层覆盖,以确保锂(Li)的稳定沉积,因此需要高温来确保锂离子通过保护层有足够的扩散动力学。本研究为基于硫化物的无阳极全固态电池提出了一种由银(Ag)和氧化锌(ZnO)纳米颗粒组成的双种子保护层。这种基于双种子的保护层不仅通过多种锂化途径在很宽的电位范围内促进锂的扩散,而且通过原位形成具有高延展性的Ag-Zn合金来增强阳极界面的机械稳定性。在室温下以1 mA cm²的电流密度和3 mAh cm²的容量进行循环时,全电池评估期间100次循环的容量保持率为80.8%。双种子方法为多种子概念的设计提供了有用的见解,从机械化学角度来看,各种亲锂材料在无阳极界面上产生协同作用。