Suppr超能文献

高收率炔胺标记寡核苷酸点击化学生物偶联物的反应性分析。

Reactivity Profiling for High-Yielding Ynamine-Tagged Oligonucleotide Click Chemistry Bioconjugations.

机构信息

Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.

Strathclyde Centre for Molecular Bioscience, University of Strathclyde, Glasgow G1 1XL, U.K.

出版信息

Bioconjug Chem. 2024 Nov 20;35(11):1788-1796. doi: 10.1021/acs.bioconjchem.4c00353. Epub 2024 Oct 10.

Abstract

The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is a key ligation tool used to prepare bioconjugates. Despite the widespread utility of CuAAC to produce discrete 1,4-triazole products, the requirement of a Cu catalyst can result in oxidative damage to these products. Ynamines are superior reactive groups in CuAAC reactions and require lower Cu loadings to produce 1,4-triazole products. This study discloses a strategy to identify optimal reaction conditions for the formation of oligodeoxyribonucleotide (ODN) bioconjugates. First, the surveying of reaction conditions identified that the ratio of Cu to the choice of reductant (i.e., either sodium ascorbate or glutathione) influences the reaction kinetics and the rate of degradation of bioconjugate products. Second, optimized conditions were used to prepare a variety of ODN-tagged products and ODN-protein conjugates and compared to conventional CuAAC and Cu-free azide-alkyne (3 + 2)cycloadditions (SPAAC), with ynamine-based examples being faster in all cases. The reaction optimization platform established in this study provides the basis for its wider utility to prepare CuAAC-based bioconjugates with lower Cu loadings while maintaining fast reaction kinetics.

摘要

铜催化的叠氮-炔环加成(CuAAC)反应是一种用于制备生物缀合物的关键连接工具。尽管 CuAAC 被广泛用于制备离散的 1,4-三唑产物,但铜催化剂的要求可能会导致这些产物发生氧化损伤。炔胺是 CuAAC 反应中更具反应性的基团,并且需要较低的铜负载量即可生成 1,4-三唑产物。本研究揭示了一种用于确定寡脱氧核苷酸(ODN)生物缀合物形成的最佳反应条件的策略。首先,对反应条件的调查表明,铜与还原剂(即抗坏血酸钠或谷胱甘肽)的比例会影响反应动力学和生物缀合物产物的降解速率。其次,优化条件用于制备各种带有 ODN 标记的产物和 ODN-蛋白质缀合物,并与传统的 CuAAC 和无铜叠氮-炔(3 + 2)环加成(SPAAC)进行比较,在所有情况下基于炔胺的例子都更快。本研究中建立的反应优化平台为其更广泛地用于制备具有较低铜负载量的 CuAAC 生物缀合物提供了基础,同时保持了快速的反应动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9aa2/11583209/23b2cc18fd68/bc4c00353_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验