Suppr超能文献

菲律宾蛤仔的腺状和囊状肾小管通过并流系统重吸收高渗水。

Hypertonic water reabsorption with a parallel-current system via the glandular and saccular renal tubules of Ruditapes philippinarum.

作者信息

Seo Eriko, Seo Yoshiteru

机构信息

Central Laboratory, Marine Ecology Research Institute, Onjuku, Chiba 299-5105, Japan.

Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan.

出版信息

J Exp Biol. 2024 Nov 15;227(22). doi: 10.1242/jeb.249533. Epub 2024 Nov 14.

Abstract

We investigated the renal function of the brackish water clam, Ruditapes philippinarum, employing magnetic resonance imaging (MRI). The R. philippinarum kidney consists of two renal tubules, a glandular (GT) and a saccular (ST) tubule. After exposure to seawater containing manganese ion (Mn2+) at 20°C, the intensity of the T1-weighted MRI and longitudinal relaxation rates (1/T1=R1) of the kidney were increased. In the ST, haemolymph containing Mn2+ entered directly from the auricle, and the Mn2+ concentration ([Mn2+]) increased in the initial part of the ST. Thereafter, [Mn2+] was almost constant until the posterior end of the kidney. The GT received haemolymph from the pedal sinus via the visceral sinus. The GT runs parallel inside the ST, and [Mn2+] increased progressively until it merged with the ST. In a range of seawater with [Mn2+] from 1 to 30 µmol l-1, the [Mn2+] increased 12-fold in the posterior part of the ST, compared with the ambient [Mn2+]. Based on these results, the epithelium of the initial part of the ST reabsorbs water from luminal fluid, building up a higher osmotic pressure. Using this osmotic gradient, hypertonic water is reabsorbed via the epithelium of the GT to the ST, and then transferred to the haemolymph via the epithelium of the ST. Excess water is excreted as urine. This model was supported by the increases in [Mn2+] in the ST when the clams were exposed to seawater containing Mn2+ at salinity from 26.0 to 36.0‰, showing that the parallel-current system works in hypotonic seawater.

摘要

我们采用磁共振成像(MRI)技术研究了咸水贝类菲律宾蛤仔的肾功能。菲律宾蛤仔的肾脏由两条肾小管组成,即腺状肾小管(GT)和囊状肾小管(ST)。在 20°C 下暴露于含有锰离子(Mn2+)的海水中后,肾脏的 T1 加权 MRI 强度和纵向弛豫率(1/T1=R1)增加。在 ST 中,含有 Mn2+的血淋巴直接从耳状突进入,并且 Mn2+浓度([Mn2+])在 ST 的初始部分增加。此后,[Mn2+]几乎保持恒定,直到肾脏的后端。GT 通过内脏窦从足窦接收血淋巴。GT 在 ST 内部平行运行,[Mn2+]逐渐增加,直到与 ST 合并。在 Mn2+浓度为 1 至 30 μmol·l-1 的一系列海水中,与环境中的 Mn2+相比,ST 后端的[Mn2+]增加了 12 倍。基于这些结果,ST 初始部分的上皮细胞从腔液中吸收水分,建立更高的渗透压。利用这个渗透压梯度,通过 GT 的上皮细胞将高渗水再吸收到 ST 中,然后通过 ST 的上皮细胞将其转移到血淋巴中。多余的水分作为尿液排出。当蛤仔暴露于 Mn2+浓度为 26.0 至 36.0‰的海水中时,ST 中[Mn2+]的增加支持了这一模型,表明平行流系统在低渗海水中起作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验